920 resultados para restricted diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immunoprecipitation technique, ELIEDA (enzyme-linked-immuno-electro-diffusion assay), was evaluated for the diagnosis of Schistosoma mansoni infection with low worm burden. One hundred of serum samples from patients excreting less than 600 eggs per gram of feces (epg), with unrelated diseases and clinically healthy subjects were studied. In patients with egg counts higher than 200 epg, the sensitivities of IgM and IgG ELIEDA were 1.000 and 0.923, respectively, not differing from other Serologic techniques, such as indirect hemaglutination (IHAT), immunofluorescence (IFT) tests and immuno-electrodiffusion assay (IEDA). However in patients with low egg counts (< 100 epg), the IgG ELIEDA provided better results (0.821) than IgM ELIEDA (0.679), showing sensitivity that did not differ from that of IgG IFT (0.929), but lower than that of IgM IFT (0.964). However, its sensivity was higher than that found with IHAT (0.607) and IEDA (0.536). The specificity of IgG ELIEDA was comparable to that of other techniques. The data indicate that IgG ELIEDA might be useful for the diagnosis of slight S. mansoni infections, and the cellulose acetate membrane strips can be stored for further retrospective studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a rare case of chronic disseminated histoplasmosis with several ulcerated lesions in the oral cavity in an alcoholic patient without human immunodeficiency virus infection, with no detectable signs and symptoms of systemic disease or extraoral manifestations. Histopathological analysis revealed chronic inflammatory process with granulomas containing Histoplasma-like organisms. The isolation of Histoplasma capsulatum provided the definitive diagnosis. Treatment with itraconazole resulted in complete remission of oral lesions. As far we aware, this is the second case report of oral histoplasmosis in an HIV negative patient described in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part of the optical clearing study in biological tissues concerns the determination of the diffusion characteristics of water and optical clearing agents in the subject tissue. Such information is sufficient to characterize the time dependence of the optical clearing mechanisms—tissue dehydration and refractive index (RI) matching. We have used a simple method based on collimated optical transmittance measurements made from muscle samples under treatment with aqueous solutions containing different concentrations of ethylene glycol (EG), to determine the diffusion time values of water and EG in skeletal muscle. By representing the estimated mean diffusion time values from each treatment as a function of agent concentration in solution, we could identify the real diffusion times for water and agent. These values allowed for the calculation of the correspondent diffusion coefficients for those fluids. With these results, we have demonstrated that the dehydration mechanism is the one that dominates optical clearing in the first minute of treatment, while the RI matching takes over the optical clearing operations after that and remains for a longer time of treatment up to about 10 min, as we could see for EG and thin tissue samples of 0.5 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of chemical diffusion in biological tissues is a research field of high importance and with application in many clinical, research and industrial areas. The evaluation of diffusion and viscosity properties of chemicals in tissues is necessary to characterize treatments or inclusion of preservatives in tissues or organs for low temperature conservation. Recently, we have demonstrated experimentally that the diffusion properties and dynamic viscosity of sugars and alcohols can be evaluated from optical measurements. Our studies were performed in skeletal muscle, but our results have revealed that the same methodology can be used with other tissues and different chemicals. Considering the significant number of studies that can be made with this method, it becomes necessary to turn data processing and calculation easier. With this objective, we have developed a software application that integrates all processing and calculations, turning the researcher work easier and faster. Using the same experimental data that previously was used to estimate the diffusion and viscosity of glucose in skeletal muscle, we have repeated the calculations with the new application. Comparing between the results obtained with the new application and with previous independent routines we have demonstrated great similarity and consequently validated the application. This new tool is now available to be used in similar research to obtain the diffusion properties of other chemicals in different tissues or organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Antifungal susceptibility testing assists in finding the appropriate treatment for fungal infections, which are increasingly common. However, such testing is not very widespread. There are several existing methods, and the correlation between such methods was evaluated in this study. METHODS: The susceptibility to fluconazole of 35 strains of Candida sp. isolated from blood cultures was evaluated by the following methods: microdilution, Etest, and disk diffusion. RESULTS: The correlation between the methods was around 90%. CONCLUSIONS: The disk diffusion test exhibited a good correlation and can be used in laboratory routines to detect strains of Candida sp. that are resistant to fluconazole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural connectivity models based on Diffusion Tensor Imaging (DTI) are strongly affected by the technique’s inability to resolve crossing fibres, either intra- or inter-hemispherical connections. Several models have been proposed to address this issue, including an algorithm aiming to resolve crossing fibres which is based on Diffusion Kurtosis Imaging (DKI). This technique is clinically feasible, even when multi-band acquisitions are not available, and compatible with multi-shell acquisition schemes. DKI is an extension of DTI enabling the estimation of diffusion tensor and diffusion kurtosis metrics. In this study we compare the performance of DKI and DTI in performing structural brain connectivity. Six healthy subjects were recruited, aged between 25 and 35 (three females). The MRI experiments were performed using a 3T Siemens Trio with a 32-channel head coil. The scans included a T1-weighted sequence (1mm3), and a DWI with b-values 0, 1000 and 2000 s:mm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To review the current literature on human herpesvirus 8 with particular attention to the aspects related to the etiopathogenesis of Kaposi's sarcoma. MATERIALS AND METHODS: The authors searched original research and review articles on specific aspects of human herpesvirus 8 infection, including virology, epidemiology, transmission, diagnosis, natural history, therapy, and Kaposi's sarcoma etiopathogenesis. The relevant material was evaluated and reviewed. RESULTS: Human herpesvirus 8 is a recently discovered DNA virus that is present throughout the world but with major geographic variation. In the Western world, the virus, transmitted mainly by means of sexual contact, is strongly associated with Kaposi's sarcoma and body cavity-based lymphoma and more controversially with multiple myeloma and other non-proliferative disorders. There is no specific effective treatment, but HIV protease inhibitors may play an indirect role in the clearance of human herpesvirus 8 DNA from peripheral blood mononuclear cells of HIV-infected patients. Human herpesvirus 8 DNA is present in saliva, but there are as yet no documented cases of nosocomial transmission to health care workers. The prevalence of human herpesvirus 8 among health care workers is probably similar to that in the general population. CONCLUSION: Human herpesvirus 8 appears to be, at least in Western Europe and United States, restricted to a population at risk of developing Kaposi's sarcoma. Human herpesvirus 8 certainly has the means to overcome cellular control and immune responses and thus predispose carriers to malignancy, particularly Kaposi's sarcoma. The wide diffusion of Human herpesvirus 8 in classic Kaposi's sarcoma areas appears to represent an important factor in the high incidence of the disease. However, additional co-factors are likely to play a role in the development of Kaposi's sarcoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotary thermal diffusion column with the inner cylinder rotating and the outer cylinder static was used to separate n-heptane-benzene mixtures at different speeds of rotation. The results show that the column efficiency depends on the speed of rotation. For the optimum speed the increase in efficiency relative to the static column was of the order of 8%. The role of the geometric irregularities in the annulus width on performance of the rotary column is also discussed.