922 resultados para respiratory-distress-syndrome


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V-T = 45 mL/kg, PEEPzero). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156 +/- 42 min and 148 +/- 41 min, respectively: p = 0.8173). However, Ptx3 overexpression led to a faster development of VILI in Ptx3-overexpressing mice (77 +/- 29 min vs 118 +/- 41 min, p = 0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of I kappa B and p65 subunit of NF kappa B phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NF kappa B activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of I kappa B and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NF kappa B, increased SOCS-1 and decreased MyD88 mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this manuscript is to describe the first year of our experience using extracorporeal membrane oxygenation support. METHODS: Ten patients with severe refractory hypoxemia, two with associated severe cardiovascular failure, were supported using venous-venous extracorporeal membrane oxygenation (eight patients) or veno-arterial extracorporeal membrane oxygenation (two patients). RESULTS: The median age of the patients was 31 yr (range 14-71 yr). Their median simplified acute physiological score three (SAPS3) was 94 (range 84-118), and they had a median expected mortality of 95% (range 87-99%). Community-acquired pneumonia was the most common diagnosis (50%), followed by P. jiroveci pneumonia in two patients with AIDS (20%). Six patients were transferred from other ICUs during extracorporeal membrane oxygenation support, three of whom were transferred between ICUs within the hospital (30%), two by ambulance (20%) and one by helicopter (10%). Only one patient (10%) was anticoagulated with heparin throughout extracorporeal membrane oxygenation support. Eighty percent of patients required continuous venous-venous hemofiltration. Three patients (30%) developed persistent hypoxemia, which was corrected using higher positive end-expiratory pressure, higher inspired oxygen fractions, recruitment maneuvers, and nitric oxide. The median time on extracorporeal membrane oxygenation support was five (range 3-32) days. The median length of the hospital stay was 31 (range 3-97) days. Four patients (40%) survived to 60 days, and they were free from renal replacement therapy and oxygen support. CONCLUSIONS: The use of extracorporeal membrane oxygenation support in severely ill patients is possible in the presence of a structured team. Efforts must be made to recognize the necessity of extracorporeal respiratory support at an early stage and to prompt activation of the extracorporeal membrane oxygenation team.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

in 2009, during the influenza A (H1N1) epidemic, there were many reported cases of pulmonary infection with severe hypoxemia that was refractory to the ventilatory strategies and rescue therapies commonly used to treat patients with severe acute respiratory distress syndrome. Many of those cases were treated with extracorporeal membrane oxygenation (ECMO), which renewed international interest in the technique. The Extracorporeal Support Study Group was created in order to practice ECMO and to employ it in the treatment of patients with severe hypoxemia. In this article, we discuss the indications for using ECMO and report the case of a patient with refractory hypoxemia who was successfully treated with ECMO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1 beta, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1 beta, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The use of corticosteroids is frequent in critically-ill patients. However, little information is available on their effects in patients with intensive care unit acquired pneumonia. We assessed patients' characteristics, microbial etiology, inflammatory response, and outcomes of previous corticosteroid use in patients with intensive care unit acquired pneumonia. Design: Prospective observational study. Setting: Intensive care units of a university teaching hospital. Patients: Three hundred sixteen patients with intensive care unit acquired pneumonia. Patients were divided according to previous systemic steroid use at onset of pneumonia. Interventions: None. Measurements and Main Results: Survival at 28 days was analyzed using Cox regression, with adjustment for the propensity for receiving steroid therapy. One hundred twenty-five (40%) patients were receiving steroids at onset of pneumonia. Despite similar baseline clinical severity, steroid treatment was associated with decreased 28-day survival (adjusted hazard ratio for propensity score and mortality predictors 2.503; 95% confidence interval 1.176-5.330; p = .017) and decreased systemic inflammatory response. In post hoc analyses, steroid treatment had an impact on survival in patients with nonventilator intensive care unit acquired pneumonia, those with lower baseline severity and organ dysfunction, and those without etiologic diagnosis or bacteremia. The cumulative dosage of corticosteroids had no significant effect on the risk of death, but bacterial burden upon diagnosis was higher in patients receiving steroid therapy. Conclusions: In critically-ill patients, systemic corticosteroids should be used very cautiously because this treatment is strongly associated with increased risk of death in patients with intensive care unit acquired pneumonia, particularly in the absence of established indications and in patients with lower baseline severity. Decreased inflammatory response may result in delayed clinical suspicion of intensive care unit acquired pneumonia and higher bacterial count. (Crit Care Med 2012; 40:2552-2561)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Many experimental models using lung lavage have been developed for the study of acute respiratory distress syndrome (ARDS). The original technique has been modified by many authors, resulting in difficulties with reproducibility. There is insufficient detail on the lung injury models used, including hemodynamic stability during animal preparation and drawbacks encountered such as mortality. The authors studied the effects of the pulmonary recruitment and the use of fixed tidal volume (Vt) or fixed inspiratory pressure in the experimental ARDS model installation. Methods: Adult rabbits were submitted to repeated lung lavages with 30 ml/kg warm saline until the ARDS definition (PaO2/FiO(2) <= 100) was reached. The animals were divided into three groups, according to the technique used for mechanical ventilation: 1) fixed Vt of 10 ml/kg; 2) fixed inspiratory pressure (IP) with a tidal volume of 10 ml/kg prior to the first lung lavage; and 3) fixed Vt of 10 ml/kg with pulmonary recruitment before the first lavage. Results: The use of alveolar recruitment maneuvers, and the use of a fixed Vt or IP between the lung lavages did not change the number of lung lavages necessary to obtain the experimental model of ARDS or the hemodynamic stability of the animals during the procedure. A trend was observed toward an increased mortality rate with the recruitment maneuver and with the use of a fixed IP. Discussion: There were no differences between the three study groups, with no disadvantage in method of lung recruitment, either fixed tidal volume or fixed inspiratory pressure, regarding the number of lung lavages necessary to obtain the ARDS animal model. Furthermore, the three different procedures resulted in good hemodynamic stability of the animals, and low mortality rate. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. Material and Methods. Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. Results. Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1 beta, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB4 and TXB2 were found to be significantly increased. Conclusions. These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Once rare, septic shock (SS) due to disseminated fungal infections has been increasingly reported due to a growing number of immunocompromised patients, but remains rare in non-immune-compromised individuals. In paracoccidioidomycosis, it has been described in only three patients with the severe, acute form of the disease. We describe the development of a refractory, fatal septic shock due to a severe disseminated chronic form of paracoccidioidomycosis in an older woman without any other microbial insults. A striking event in the evolution of her case was the severe depletion of lymphocytes from the peripheral blood and lymphoid organs. Lymphocyte depletion due to apoptosis is described in the late phase of sepsis and can contribute both to immunosuppression and the progression of SS. The possible mechanisms involved in the induction of SS in the chronic form of paracoccidioidomycosis are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contents The effects of glucocorticoids on both foetal canine lung and endogenous serum cortisol concentration have not been clearly delineated. Therefore, we aimed to investigate whether maternal corticosteroid treatment can alter maternal and neonatal cortisol profile and improve neonatal vitality. We allocated six bitches of different breeds and their neonates into two groups: control group (CONT) maternal administration of saline solution at 55days post-ovulation (n=3); and betamethasone group (BETA) administration of a single dose of 0.5mg/kg betamethasone (Celestone Soluspan(R)) at 55days post-ovulation (n=3). Caesarean sections were scheduled for day 63 after ovulation. However, BETA group dams showed precocious signs of labour, and c-sections were performed at 58days post-ovulation. Maternal and neonatal evaluations were performed periodically between betamethasone administration and birth, respectively. Neonates from both groups presented unsatisfactory (<5) Apgar score at birth. However, in spite of an earlier improvement on vitality found on CONT group and the premature delivery on BETA group, both groups showed acceptable Apgar score 120min after birth. Neonatal cortisol concentrations were higher on CONT group compared to BETA group at birth. In addition, a gradual decrease on maternal cortisol concentrations was observed in the BETA group from treatment until parturition. These findings suggest that despite the down-regulation on the hypothalamic-pituitary-adrenal axis and the induction of premature delivery, betamethasone treatment was able to provide similar vitality when compared to the untreated neonates born at term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.