972 resultados para resins
Resumo:
The disinfection of dental prostheses by immersion in a chemical solution should be capable of rapid inactivation of pathogenic microorganisms, without causing any adverse effect on the denture base resins. This study evaluated the effect of disinfection immersion on the transverse strength of two heat-cured resins. The denture base resins (Lucitone 550 and QC 20) were polymerized according to the manufacturers' instructions. After polymerization, the specimens were polished, and then stored in water at 37 degreesC for 50 +/- 2 h prior immersion in one of the following solutions for 10 min: 4% chlorhexidine, 1% sodium hypochlorite and 3.78% sodium perborate. The specimens were submitted to disinfection twice, simulating when dentures come from the patient and before being returned to the patient. Ten specimens were made for each group. The transverse strength was evaluated by a 3-point bend test. The flexural strength of the two denture base acrylic resins evaluated remained unaffected after immersion in the three solutions evaluated. In general, the QC 20 resin specimens exhibited lower transverse strength than the Lucitone 550 resin specimens, regardless of immersion solutions.
Resumo:
The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.
Resumo:
Statement of problem. Microwave postpolymerization has been Suggested as a method to improve the mechanical strength of repaired denture base materials. However, the effect of microwave heating oil the flexural strength of the autopolymerizing denture reline resins has not been investigated.Purpose. This study analyzed the effect of microwave postpolymerization on the flexural strength of 4 autopolymerizing reline resins (Duraliner II, Kooliner, Ufi Gel Hard, and Tokuso Rebase Fast) and 1 heat-polymerized resin (Lucitone 550).Material and methods. For each material, 80 specimens (64 X 10 X 3.3 mm) were polymerized according to the manufacturer's instructions and divided into 10 groups (n = 8). Control group specimens remained as processed. Before testing, the specimens were Subjected to postpolymerization in a microwave oven using different power (500, 5,50, or 650 W) and time (3, 4, or 5 Minutes) settings. Load measurements (newtons) were made at a crosshead speed of 5 mm/min using a 3-point bending device with a span of 50 mill. The flexural strength values were calculated in MPa. Data analyses included 3-way and 2-way analysis of variance and the Tukey Honestly Significant Difference test (alpha=.05).Results. The flexural strengths of resins Duraliner 11 and Kooliner were significantly increased (P=.0015 and P=.0046, respectively) with the application of microwave irradiation using different time/power combinations. The materials Lucitone 550, Tokuso Rebase Fast, and Ufi Gel Hard demonstrated no significant strength improvement compared to the corresponding control. Only after microwave postpolymerization irradiation for 3 minutes at 550 W did Lucitione 550 show significantly higher flexural strength than Tokuso Rebase Fast and Ufi Gel Hard relining resins.Conclusion. Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of Duraliner II (at 650 W) and Kooliner (at 550 W and 650 W for 5 minutes).
Resumo:
Objective. To identify and quantify the camphorquinone (CQ) used in different brands of composite resins as a function of the shade analyzed.Materials and methods. Filtek Z250 A3 (FZA3), Filtek Z-250 Incisal (FZI), Pyramid Enamel A1 (PEA1), Pyramid Enamel Translucent (PET), Filtek Supreme A3E (FSA3) and Filtek Supreme GT (FSGT) were used. Five hundred milligrams of each resin were weighed and then dissolved in 1.0 ml of methanol. The samples were centrifuged to accelerate the sedimentation of the inorganic particles. 0.8 ml of the supernatant solution was collected with a pipette and assessed under gas chromatography coupled to the mass spectrometer (GC-MS). The results were compared to pure CQ solutions, used as a standard. Student's t-test, (p = 0.05) significant at the level of 5%, compared the results of each brand shade.Results. A smaller amount of camphorquinone was found in Filtek Z-250 (FZI) resin incisal shade when compared to (FZA3) A3 shade. on the other hand, Filtek Supreme resin featured a statistically larger camphorquinone amount in the incisal shade. in Pyramid Enamel resin camphorquinone was found only in shade Al, while the photoinitiator used in the Translucent shade was not identified.Significance. Based on the data obtained, it is possible to conclude that a single composite resin brand may feature differences in amount and type of photoinitiator used. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.