984 resultados para representation theory
Resumo:
Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented.
Resumo:
Science has been developed from the rational-empirical methods, having as a consequence, the representation of existing phenomena without understanding the root causes. The question which currently has is the sense of the being, and in a simplified way, one can say that the dogmatic religion lead to misinterpretations, the empirical sciences contain the exact rational representations of phenomena. Thus, Science has been able to get rid of the dogmatic religion. The project for the sciences of being looks to return to reality its essential foundations; under the plan of theory of systems necessarily involves a search for the meaning of Reality.
Resumo:
We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary excitations are found by means of Bogoliubov transformation, as a function of the two variables that can be controlled experimentally, the applied magnetic field and the chain length. Three main results are found. First, because of the noncollinear nature of the classical ground state, there is a significant zero-point reduction of the ground-state magnetization of the spin spiral. Second, there is a critical external field from which the ground state changes from chiral spin ground state to collinear ferromagnetic order. The character of the two lowest-energy spin waves changes from edge modes to confined bulk modes over this critical field. Third, in the spin-spiral state, the spin-wave spectrum exhibits oscillatory behavior as function of the chain length with the same period of the spin helix.
Resumo:
This thesis originates from my interest in exploring how minorities are using social media to talk back to mainstream media. This study examines whether hashtags that trend on Twitter may impact how news stories related to minorities are covered in Canadian media. The Canadian Prime Minister Stephen Harper stated the niqab was “rooted in a culture that is anti-women” on 10 March 2015. The next day #DressCodePM trended in response to the PM’s niqab remarks. Using network gatekeeping theory, this study examines the types of sources quoted in the media stories published on 10 and 11 March 2015. The study’s goal is to explore whether using tweet quotes leads to the representation of a more diverse range of news sources. The study compares the types of sources quoted in stories that covered Harper’s comments without mentioning #DressCodePM versus stories that mention #DressCodePM. This study also uses Tuen A. van Dijk’s methodology of asking “who is speaking, how often and how prominently?” in order to examine whose voices have been privileged and whose voices have been marginalized in covering the niqab in Canadian media from the 1970s and until the days following the PM’s remarks. Network gatekeeping theory is applied in this study to assess whether the gated gained more power after #DressCodePM trended. The case study’s findings indicates that Caucasian male politicians were predominantly used as news sources in covering stories related to the niqab for the past 38 years in the Globe and Mail. The sourcing pattern of favouring politicians continued in Canadian print and online media on 10 March 2015 following Harper’s niqab comments. However, ordinary Canadian women, including Muslim women, were used more often than politicians as news sources in the stories about #DressCodePM that were published on 11 March 2015. The gated media users were able to gain power and attract Canadian Media’s attention by widely spreading #DressCodePM. This study draws attention to the lack of diversity of sources used in Canadian political news stories, yet this study also shows it is possible for the gated media users to amplify their voices through hashtag activism.
Resumo:
Includes bibliographical references and index.
Resumo:
Includes bibliographical references and index.
Resumo:
Includes bibliographical references and index.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.
Resumo:
This study assessed the theory of mind (ToM) and executive functioning (EF) abilities of 124 typically developing preschool children aged 3 to 5 years in relation to whether or not they had a child-aged sibling (i.e. a child aged 1 to 12 years) at home with whom to play and converse. On a ToM battery that included tests of false belief, appearance-reality (AR) and pretend representation, children who had at least 1 child-aged sibling scored significantly higher than both only children and those whose only siblings were infants or adults. The numbers of child-aged siblings in preschoolers' families positively predicted their scores on both a ToM battery (4 tasks) and an EF battery (2 tasks), and these associations remained significant with language ability partialled out. Results of a hierarchical multiple regression analysis revealed that independent contributions to individual differences in ToM were made by language ability, EF skill and having a child-aged sibling. However, even though some conditions for mediation were met, there was no statistically reliable evidence that EF skills mediated the advantage of presence of child-aged siblings for ToM performance. While consistent with the theory that distinctively childish interaction among siblings accelerates the growth of both TOM and EF capacities, alternative evidence and alternative theoretical interpretations for the findings were also considered.
Resumo:
In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).
Resumo:
Graphic depiction is an established method for academics to present concepts about theories of innovation. These expressions have been adopted by policy-makers, the media and businesses. However, there has been little research on the extent of their usage or effectiveness ex-academia. In addition, innovation theorists have ignored this area of study, despite the communication of information about innovation being acknowledged as a major determinant of success for corporate enterprise. The thesis explores some major themes in the theories of innovation and compares how graphics are used to represent them. The thesis examines the contribution of visual sociology and graphic theory to an investigation of a sample of graphics. The methodological focus is a modified content analysis. The following expressions are explored: check lists, matrices, maps and mapping in the management of innovation; models, flow charts, organisational charts and networks in the innovation process; and curves and cycles in the representation of performance and progress. The main conclusion is that academia is leading the way in usage as well as novelty. The graphic message is switching from prescription to description. The computerisation of graphics has created a major role for the information designer. It is recommended that use of the graphic representation of innovation should be increased in all domains, though it is conceded that its content and execution need to improve, too. Education of graphic 'producers', 'intermediaries' and 'consumers' will play a part in this, as will greater exploration of diversity, novelty and convention. Work has begun to tackle this and suggestions for future research are made.
Resumo:
This thesis describes a novel connectionist machine utilizing induction by a Hilbert hypercube representation. This representation offers a number of distinct advantages which are described. We construct a theoretical and practical learning machine which lies in an area of overlap between three disciplines - neural nets, machine learning and knowledge acquisition - hence it is refered to as a "coalesced" machine. To this unifying aspect is added the various advantages of its orthogonal lattice structure as against less structured nets. We discuss the case for such a fundamental and low level empirical learning tool and the assumptions behind the machine are clearly outlined. Our theory of an orthogonal lattice structure the Hilbert hypercube of an n-dimensional space using a complemented distributed lattice as a basis for supervised learning is derived from first principles on clearly laid out scientific principles. The resulting "subhypercube theory" was implemented in a development machine which was then used to test the theoretical predictions again under strict scientific guidelines. The scope, advantages and limitations of this machine were tested in a series of experiments. Novel and seminal properties of the machine include: the "metrical", deterministic and global nature of its search; complete convergence invariably producing minimum polynomial solutions for both disjuncts and conjuncts even with moderate levels of noise present; a learning engine which is mathematically analysable in depth based upon the "complexity range" of the function concerned; a strong bias towards the simplest possible globally (rather than locally) derived "balanced" explanation of the data; the ability to cope with variables in the network; and new ways of reducing the exponential explosion. Performance issues were addressed and comparative studies with other learning machines indicates that our novel approach has definite value and should be further researched.