819 resultados para relay filtering
Resumo:
Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.
Resumo:
Transformer protection is one of the most challenging applications within the power system protective relay field. Transformers with a capacity rating exceeding 10 MVA are usually protected using differential current relays. Transformers are an aging and vulnerable bottleneck in the present power grid; therefore, quick fault detection and corresponding transformer de-energization is the key element in minimizing transformer damage. Present differential current relays are based on digital signal processing (DSP). They combine DSP phasor estimation and protective-logic-based decision making. The limitations of existing DSP-based differential current relays must be identified to determine the best protection options for sensitive and quick fault detection. The development, implementation, and evaluation of a DSP differential current relay is detailed. The overall goal is to make fault detection faster without compromising secure and safe transformer operation. A detailed background on the DSP differential current relay is provided. Then different DSP phasor estimation filters are implemented and evaluated based on their ability to extract desired frequency components from the measured current signal quickly and accurately. The main focus of the phasor estimation evaluation is to identify the difference between using non-recursive and recursive filtering methods. Then the protective logic of the DSP differential current relay is implemented and required settings made in accordance with transformer application. Finally, the DSP differential current relay will be evaluated using available transformer models within the ATP simulation environment. Recursive filtering methods were found to have significant advantage over non-recursive filtering methods when evaluated individually and when applied in the DSP differential relay. Recursive filtering methods can be up to 50% faster than non-recursive methods, but can cause false trip due to overshoot if the only objective is speed. The relay sensitivity is however independent of filtering method and depends on the settings of the relay’s differential characteristics (pickup threshold and percent slope).
Resumo:
We detect internal water molecules in a membrane-embedded receptor-transducer complex and demonstrate water structure changes during formation of the signaling state. Time-resolved FTIR spectroscopy reveals stimulus-induced repositioning of one or more structurally active water molecules to a significantly more hydrophobic environment in the signaling state of the sensory rhodopsin II (SRII)-transducer (HtrII) complex. These waters, distinct from bound water molecules within the SRII receptor, appear to be in the middle of the transmembrane interface region near the Tyr199(SRII)-Asn74(HtrII) hydrogen bond. We conclude that water potentially plays an important role in the SRII --> HtrII signal transfer mechanism in the membrane's hydrophobic core.
Resumo:
Cramér Rao Lower Bounds (CRLB) have become the standard for expression of uncertainties in quantitative MR spectroscopy. If properly interpreted as a lower threshold of the error associated with model fitting, and if the limits of its estimation are respected, CRLB are certainly a very valuable tool to give an idea of minimal uncertainties in magnetic resonance spectroscopy (MRS), although other sources of error may be larger. Unfortunately, it has also become standard practice to use relative CRLB expressed as a percentage of the presently estimated area or concentration value as unsupervised exclusion criterion for bad quality spectra. It is shown that such quality filtering with widely used threshold levels of 20% to 50% CRLB readily causes bias in the estimated mean concentrations of cohort data, leading to wrong or missed statistical findings-and if applied rigorously-to the failure of using MRS as a clinical instrument to diagnose disease characterized by low levels of metabolites. Instead, absolute CRLB in comparison to those of the normal group or CRLB in relation to normal metabolite levels may be more useful as quality criteria. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.