1000 resultados para redes neurais artificiais
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The aim of this work is to advance a new approach for estimating demographic density, through combining a Geographic Information System with GMDH Neural Networks. The model that is suggested parts the analyzed space into a rectangular grid formed by multiple cells measuring 0.01 km2 each. The forecasts are elaborated based on the demographic density in each cell and in its neighboring cells at a given time. Despite the limited availability of data during the modeling phase, the utilization of this method for studying a Brazilian medium-sized city presented promising results.
Resumo:
Neste artigo é apresentada uma abordagem para aumentar a eficácia das Redes Neurais Artificiais de Funções de Base Radial utilizando um algoritmo de agrupamento de dados via Floresta de Caminhos Ótimos. Algumas técnicas comumente empregadas para essa tarefa, como o conhecido k-médias, requerem um determinado número de classes/agrupamentos prévio à sua execução. Embora o número de classes seja conhecido em problemas supervisionados, o número real de agrupamentos é difícil de ser encontrado, dado que uma classe pode ser representada por mais de um agrupamento. Experimentos em nove bases de dados, em conjunto com análises estatísticas, demonstraram que o classificador por Floresta de Caminhos Ótimos possui um melhor desempenho que a técnica k-médias, bem como encontra as médias das distribuições Gaussianas em posições muito similares às encontradas por este último. Entretanto, o classificador por Floresta de Caminhos Ótimos possui um custo computacional maior, dado que a sua etapa de treinamento é mais custosa que a da técnica k-médias.
Resumo:
Diesel fuel is one of leading petroleum products marketed in Brazil, and has its quality monitored by specialized laboratories linked to the National Agency of Petroleum, Natural Gas and Biofuels - ANP. The main trial evaluating physicochemical properties of diesel are listed in the resolutions ANP Nº 65 of December 9th, 2011 and Nº 45 of December 20th, 2012 that determine the specification limits for each parameter and methodologies of analysis that should be adopted. However the methods used although quite consolidated, require dedicated equipment with high cost of acquisition and maintenance, as well as technical expertise for completion of these trials. Studies for development of more rapid alternative methods and lower cost have been the focus of many researchers. In this same perspective, this work conducted an assessment of the applicability of existing specialized literature on mathematical equations and artificial neural networks (ANN) for the determination of parameters of specification diesel fuel. 162 samples of diesel with a maximum sulfur content of 50, 500 and 1800 ppm, which were analyzed in a specialized laboratory using ASTM methods recommended by the ANP, with a total of 810 trials were used for this study. Experimental results atmospheric distillation (ASTM D86), and density (ASTM D4052) of diesel samples were used as basic input variables to the equations evaluated. The RNAs were applied to predict the flash point, cetane number and sulfur content (S50, S500, S1800), in which were tested network architectures feed-forward backpropagation and generalized regression varying the parameters of the matrix input in order to determine the set of variables and the best type of network for the prediction of variables of interest. The results obtained by the equations and RNAs were compared with experimental results using the nonparametric Wilcoxon test and Student's t test, at a significance level of 5%, as well as the coefficient of determination and percentage error, an error which was obtained 27, 61% for the flash point using a specific equation. The cetane number was obtained by three equations, and both showed good correlation coefficients, especially equation based on aniline point, with the lowest error of 0,816%. ANNs for predicting the flash point and the index cetane showed quite superior results to those observed with the mathematical equations, respectively, with errors of 2,55% and 0,23%. Among the samples with different sulfur contents, the RNAs were better able to predict the S1800 with error of 1,557%. Generally, networks of the type feedforward proved superior to generalized regression.