945 resultados para rede neural
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.
Resumo:
O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.
Resumo:
Neste trabalho é apresentado um modelo de redes neurais que será utilizado como ferramenta para uso no planejamento energético e na construção de cenários energéticos através da identificação e agrupamento de pixels representativos de classes de água, vegetação e antropização no entorno do reservatório de Tucuruí, Estado do Pará (bacia do rio Tocantins). Para o estudo, foram utilizadas fotografias aéreas ortorretificadas e um recorte da imagem do satélite Landsat, ambos obtidos em agosto de 2001 e classificados utilizando a métrica da mínima distância no software Matlab 7.3.0 (Matrix Laboratory - software de matemática aplicada) e no Arcview 3.2a (programa de Sistemas de Informações Geográficas). Para classificação da área no Matlab, foram utilizadas redes neurais competitivas, mais especificamente as redes de Kohonen que são caracterizadas por realizar um mapeamento de um espaço de dimensão n (número de entradas) para um espaço de dimensão m (número de saídas). Os resultados obtidos no classificador utilizando rede neural e no classificador do Arcview foram semelhantes, mas houve uma divergência no que diz respeito à imagem de alta e média resolução que pode ser justificada pelo fato de que a imagem de alta resolução espacial ocasiona muita variação espectral em algumas feições, gerando dificuldades nas classificações. Esse classificador automático é uma ferramenta importante para identificar oportunidades e potenciais a serem desenvolvidos na construção de cenários energéticos programados. Os resultados deste trabalho confirmam que a imagem de média resolução ainda é a mais indicada para resolver a maioria dos problemas que envolvem identificação de cobertura do solo para utilização em planejamento energético.
Identificação e estimação de ruído em redes DSL: uma abordagem baseada em inteligência computacional
Resumo:
Este trabalho propõe a utilização de técnicas de inteligência computacional objetivando identificar e estimar a potencia de ruídos em redes Digital Subscriber Line ou Linhas do Assinante Digital (DSL) em tempo real. Uma metodologia baseada no Knowledge Discovery in Databases ou Descobrimento de Conhecimento em Bases de Dados (KDD) para detecção e estimação de ruídos em tempo real, foi utilizada. KDD é aplicado para selecionar, pré-processar e transformar os dados antes da etapa de aplicação dos algoritmos na etapa de mineração de dados. Para identificação dos ruídos o algoritmo tradicional backpropagation baseado em Redes Neurais Artificiais (RNA) é aplicado objetivando identificar o tipo de ruído em predominância durante a coleta das informações do modem do usuário e da central. Enquanto, para estimação o algoritmo de regressão linear e o algoritmo híbrido composto por Fuzzy e regressão linear foram aplicados para estimar a potência em Watts de ruído crosstalk ou diafonia na rede. Os resultados alcançados demonstram que a utilização de algoritmos de inteligência computacional como a RNA são promissores para identificação de ruídos em redes DSL, e que algoritmos como de regressão linear e Fuzzy com regressão linear (FRL) são promissores para a estimação de ruídos em redes DSL.
Resumo:
A monitorização ambulatorial do eletrocardiograma (ECG) permite seguir as atividades cotidianas do paciente durante períodos de 24 horas (ou ainda maiores) possibilitando o estudo de casos que pudessem ter episódios arrítmicos fatais. Entretanto, o maior desafio tecnológico que este tipo de monitorização enfrenta é a perda de informação pela presença de ruídos e artefatos quando o paciente se move. A análise do intervalo QT de despolarização e repolarização ventricular do eletrocardiograma superficial é uma técnica não invasiva com um grande valor para a diagnose e prognósticos de cardiopatias e neuropatias, assim como para a predição da morte cardíaca súbita. A análise do desvio padrão do intervalo QT proporciona informação sobre a dispersão (temporal ou espacial) da repolarização ventricular, entretanto a influencia do ruído provoca erros na detecção do final da onda T que são apreciáveis devido ao fato dos valores pequenos do desvio padrão do QT tanto para sujeitos patológicos e quanto para os sãos. O objetivo geral desta tese é melhorar os métodos de processamento do sinal de ECG ambulatorial usando inteligência computacional, especificamente os métodos relacionados com a detecção do final da onda T, e os de reconhecimento morfológico de batimentos que invalidam a análise da variabilidade do intervalo QT. É proposto e validado (em termos de exatidão e precisão) um novo método e algoritmo para estimar o final da onda T baseado no calculo de áreas de trapézios, empregando sinais da base de dados QT da Physionet. O desempenho do método proposto foi testado e comparado com um dos métodos mais usados para detectar o final da onda T: o método baseado no limiar na primeira derivada. O método de inteligência computacional sugerido combina a extração de características usando o método de análise de componentes principais não lineares e a rede neural de tipo perceptron multicamada. O método de áreas de trapézios teve um bom desempenho em condições ruidosas e não depende de nenhum limiar empírico, sendo adequado para situações com níveis de elevados de ruído de banda larga. O método de reconhecimento morfológico de batimentos foi avaliado com sinais ambulatoriais com e sem artefatos pertencentes a bases de dados de prestigio internacional, e mostrou um bom desempenho.
Resumo:
A principal dificuldade encontrada na proteção diferencial de transformadores de potência é a correta distinção entre as correntes de inrush e as correntes de faltas internas. Tradicionalmente os relés diferenciais executam esta tarefa utilizando a técnica de restrição por harmônicos baseada na premissa de que as correntes de inrush possuem alta concentração de componentes harmônicas de segunda ordem, contudo essa técnica nem sempre é eficaz. O presente trabalho tem como objetivo apresentar a proposta de duas novas metodologias capazes de realizar a identificação e distinção entre as correntes de inrush das correntes de faltas internas na proteção diferencial de transformadores de potência através de metodologias que não dependem do conteúdo de harmônicos do sinal da corrente diferencial. A primeira metodologia proposta, denominada de método do gradiente da corrente diferencial, é baseada no comportamento do vetor gradiente, obtido através da diferenciação numérica do sinal da corrente diferencial. O critério de distinção utilizado é baseado no desvio padrão do ângulo do vetor gradiente que apresenta comportamento diferenciado para correntes de inrush e correntes de curto-circuito. A segunda metodologia proposta é baseada na capacidade de reconhecimento e classificação de padrões das redes neurais de Mapeamento Auto-organizável de Kohonen. Como padrão de entrada e de treinamento da rede neural é utilizado um vetor contendo quatro níveis do espectro do desvio padrão do ângulo do vetor gradiente da corrente diferencial nas três fases do transformador de potência. A eficácia dos métodos foi testada através da simulação de diversas situações de faltas internas e correntes de inrush, incluindo situações de “Sympathetic Inrush”, em um transformador de potência usando o software EMTP/ATP e através da implementação do algoritmo em MATLAB®, apresentando resultados altamente promissores.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
A análise dos perfis petrofísicos de poço aberto possui um papel de fundamental importância para os estudos geológicos e geofísicos, no que se refere a obtenção de um maior conhecimento da subsuperfície, bem como para a identificação e exploração de depósitos minerais e petrolíferos. Alguns tópicos importantes da interpretação geológica dos perfis como a determinação de interfaces, a identificação mineralógica e a correlação poço-a-poço são extremamente tediosos e dispendem na sua execução uma grande carga horária. A automação destes procedimentos é em princípio bastante complicada, mas necessária, pois permitirá um melhor aproveitamento do tempo de trabalho do geólogo de produção e do intérprete de perfis. As redes neuronais artificiais apresentam uma boa performance para a solução destes tipos de problema, inclusive nos casos nos quais os algoritmos sequenciais apresentam dificuldades. Mostrar-se-á nesta tese que as redes neuronais artificiais podem ser utilizadas eficientemente para a automação desses procedimentos da interpretação geológica dos perfis. Apresentamos detalhadamente as novas arquiteturas e as aplicações sobre dados sintéticos e perfis reais.
Resumo:
O imageamento da porosidade é uma representação gráfica da distribuição lateral da porosidade da rocha, estimada a partir de dados de perfis geofísicos de poço. Apresenta-se aqui uma metodologia para produzir esta imagem geológica, totalmente independente da intervenção do intérprete, através de um algoritmo, dito, interpretativo baseado em dois tipos de redes neurais artificiais. A primeira parte do algoritmo baseia-se em uma rede neural com camada competitiva e é construído para realizar uma interpretação automática do clássico gráfico o Pb - ΦN, produzindo um zoneamento do perfil e a estimativa da porosidade. A segunda parte baseia-se em uma rede neural com função de base radial, projetado para realizar uma integração espacial dos dados, a qual pode ser dividida em duas etapas. A primeira etapa refere-se à correlação de perfis de poço e a segunda à produção de uma estimativa da distribuição lateral da porosidade. Esta metodologia ajudará o intérprete na definição do modelo geológico do reservatório e, talvez o mais importante, o ajudará a desenvolver de um modo mais eficiente as estratégias para o desenvolvimento dos campos de óleo e gás. Os resultados ou as imagens da porosidade são bastante similares às seções geológicas convencionais, especialmente em um ambiente deposicional simples dominado por clásticos, onde um mapa de cores, escalonado em unidades de porosidade aparente para as argilas e efetiva para os arenitos, mostra a variação da porosidade e a disposição geométrica das camadas geológicas ao longo da seção. Esta metodologia é aplicada em dados reais da Formação Lagunillas, na Bacia do Lago Maracaibo, Venezuela.
Resumo:
A identificação de fácies em um poço não testemunhado é um dos problemas clássicos da avaliação de formação. Neste trabalho este problema é tratado em dois passos, no primeiro produz-se a codificação da informação geológica ou da descrição das fácies atravessadas em um poço testemunhado em termos das suas propriedades físicas registradas nos perfis geofísicos e traduzidas pelos parâmetros L e K, que são obtidos a partir dos perfis de porosidade (densidade, sônico e porosidade neutrônica) e pela argilosidade (Vsh) calculada pelo perfil de raio gama natural. Estes três parâmetros são convenientemente representados na forma do Gráfico Vsh-L-K. No segundo passo é realizada a interpretação computacional do Gráfico Vsh-L-K por um algoritmo inteligente construído com base na rede neural competitiva angular generalizada, que é especializada na classificação de padrões angulares ou agrupamento de pontos no espaço n-dimensional que possuem uma envoltória aproximadamente elipsoidal. Os parâmetros operacionais do algoritmo inteligente, como a arquitetura da rede neural e pesos sinápticos são obtidos em um Gráfico Vsh-L-K, construído e interpretado com as informações de um poço testemunhado. Assim, a aplicação deste algoritmo inteligente é capaz de identificar e classificar as camadas presentes em um poço não testemunhado, em termos das fácies identificadas no poço testemunhado ou em termos do mineral principal, quando ausentes no poço testemunhado. Esta metodologia é apresentada com dados sintéticos e com perfis de poços testemunhados do Campo de Namorado, na Bacia de Campos, localizada na plataforma continental do Rio de Janeiro, Brasil.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Aplicação de redes NeuroFuzzy ao processamento de peças automotivas por meio de injeção de polímeros
Resumo:
The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify these parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)