961 resultados para receptor activator of nuclear factor-kappa B ligand
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alveolar bone resorption results from the inflammatory response to periodontal pathogens. Systemic diseases that affect the host response, such as type 1 diabetes mellitus (DM1), can potentiate the severity of periodontal disease (PD) and accelerate bone resorption. However, the biological mechanisms by which DM1 modulates PD are not fully understood. The aim of this study was to determine the influence of DM1 on alveolar bone resorption and to evaluate the role of receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin (OPG) in osteoclastogenesis in rats. PD was induced by means of ligature in nondiabetic and in streptozotocyn-induced DM1 rats. Morphological and morphometric analyses, stereology and osteoclast counting were performed. RANKL and OPG mRNA levels, protein content, and location were determined. PD caused alveolar bone resorption, increased the number of osteoclasts in the alveolar bone crest and also promoted changes in RANKL/OPG mRNA expression. DM1 alone showed alveolar bone destruction and an increased number of osteoclasts at the periapical and furcal regions. DM1 exacerbated these characteristics, with a greater impact on bone structure, resulting in a low OPG content and a higher RANKL/OPG ratio, which correlated with prominent osteoclastogenesis. This work demonstrates that the effects of PD and DM1 enhance bone destruction, confirms the importance of the RANKL signaling pathway in bone destruction in DM1 in animal models and suggests the existence of alternative mechanisms potentiating bone degradation in PD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-alpha (TNF alpha) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNF alpha and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-kappa B (NF-kappa B) kinase (I kappa K) phosphorylation. Myotubes were assayed for glucose uptake and NF-kappa B translocation. Chromatin immunoprecipitation assessed NF-kappa B binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNF alpha and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNF alpha and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNF alpha-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-kappa B in myotubes and binding of NF-kappa B to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance. (C) 2012 Elsevier B.V. All rights reserved.
Nuclear Factor (NF) κB polymorphism is associated with heart function in patients with heart failure
Resumo:
Abstract Background Cardiac remodeling is generally an adverse sign and is associated with heart failure (HF) progression. NFkB, an important transcription factor involved in many cell survival pathways, has been implicated in the remodeling process, but its role in the heart is still controversial. Recently, a promoter polymorphism associated with a lesser activation of the NFKB1 gene was also associated with Dilated Cardiomyopathy. The purpose of this study was to evaluate the association of this polymorphism with clinical and functional characteristics of heart failure patients of different etiologies. Methods A total of 493 patients with HF and 916 individuals from a cohort of individuals from the general population were investigated. The NFKB1 -94 insertion/deletion ATTG polymorphism was genotyped by High Resolution Melt discrimination. Allele and genotype frequencies were compared between groups. In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotype groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the polymorphism were compared regarding disease onset and mortality incidence in HF patients. Results We did not find differences in genotype and allelic frequencies between cases and controls. Interestingly, we found an association between the ATTG1/ATTG1 genotype with right ventricle diameter (P = 0.001), left ventricle diastolic diameter (P = 0.04), and ejection fraction (EF) (P = 0.016), being the genotype ATTG1/ATTG1 more frequent in patients with EF lower than 50% (P = 0.01). Finally, we observed a significantly earlier disease onset in ATTG1/ATTG1 carriers. Conclusion There is no genotype or allelic association between the studied polymorphism and the occurrence of HF in the tested population. However, our data suggest that a diminished activation of NFKB1, previously associated with the ATTG1/ATTG1 genotype, may act modulating on the onset of disease and, once the individual has HF, the genotype may modulate disease severity by increasing cardiac remodeling and function deterioration.
Immunohistochemical localization of RANK, RANKL and OPG in healthy and arthritic canine elbow joints
Resumo:
OBJECTIVE: To determine if the receptor activator of nuclear factor-kappaB-receptor activator of nuclear factor-kappaB ligand-osteoprotegerin (RANK-RANKL-OPG) system is active in bone remodeling in dogs and, if so, whether differences in expression of these mediators occur in healthy and arthritic joints. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Fragmented processus coronoidei (n=20) were surgically removed from dogs with elbow arthritis and 5 corresponding healthy samples from dogs euthanatized for reasons other than elbow joint disease. METHODS: Bright-field immunohistochemistry and high-resolution fluorescence microscopy were used to investigate the distribution of RANK, RANKL, and OPG in healthy and arthritic joints. RESULTS: All 3 molecules were identified by immunostaining of canine bone tissue. In elbow dysplasia, the number of RANK-positive osteoclasts was increased. In their vicinity, cells expressing RANKL, a mediator of osteoclast activation, were abundant whereas the number of osteoblasts having the potential to limit osteoclastogenesis and bone resorption via OPG was few. CONCLUSIONS: The RANK-RANKL-OPG system is active in bone remodeling in dogs. In elbow dysplasia, a surplus of molecules promoting osteoclastogenesis was evident and is indicative of an imbalance between the mediators regulating bone resorption and bone formation. Both OPG and neutralizing antibodies against RANKL have the potential to counterbalance bone resorption. CLINICAL RELEVANCE: Therapeutic use of neutralizing antibodies against RANKL to inhibit osteoclast activation warrants further investigation.
Resumo:
Background: Receptor Activator of Nuclear Factor kappaB Ligand (RANKL), a member of the TNF superfamily, contributes to the imbalance of bone resorption and immunoregulation in rheumatoid arthritis. In mice, collagen induced arthritis was exacerbated by IL-3 and anti-IgER antibodies, two mediators activating basophils that are known as effector cells of allergy. Interestingly, our unpublished microarray data revealed that IL-3 induces RANKL mRNA in human basophils. Here we further investigate under which conditions human basophils express surface and/or soluble RANKL. Methods: One part of purified human basophils was co-stimulated with IL-3 and either IgE-dependent or IgE-independent stimuli. The other part of purified basophils was first primed with IL-3 and subsequently triggered with IgE-dependent or IgE-independent stimuli. Expression of surface and soluble RANKL were detected by flow cytometry, ELISA and real-time PCR. Results: By flow cytometry we show that IL-3 induces de novo expression of surface RANKL on human basophils in a time and dose dependent manner. Co-stimulation of basophils with IL-3 and an IgE-dependent stimulus reduces IL-3-induced expression of surface RANKL in a dose dependent manner while IgE-independent stimuli have no effect. In contrast, both IgE-dependent and IgE-independent stimuli enhance expression of surface and soluble RANKL in basophils that were first primed with IL-3 and then triggered. Real-time PCR analysis shows that surface hRANKL1 and soluble hRANKL3 are induced by IL-3 and reduced by co-stimulation with IL-3 and an IgE-dependent stimulus and thus confirms our flow cytometry data. Conclusion: RANKL expression in human basophils is not only dependent on IL-3 and IgE-dependent/IgE-independent stimuli but also on the sequence of their addition to cell culture. Based on our data, we suggest that basophils might have previously unidentified functions in bone resorption or immunoregulation via RANKL.
Resumo:
Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.
Resumo:
Periodontal diseases, highly prevalent disease in worldwide population, manifest primarily in two distinct entities: plaque-induced gingivitis and periodontitis. Periodontitis is a chronic inflammatory disease characterized of different levels of collagen, cementum, and alveolar bone destruction. Recent experimental studies demonstrated anti-inflammatory and antirreabsortive effect of antihypertensive agents of the angiotensin II receptor blockers class on periodontal disease. The aim of this study was to evaluate the effects of azilsartan (AZT), a potent inhibitor of the angiotensin II receptor which has minimal adverse effects on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor kB ligand (RANKL), receptor activator of nuclear factor kB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. Male Wistar albino rats were randomly divided into 5 groups of 20 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with water or AZT for 10 days. Periodontal tissues were analyzed by morphometric exam, histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1b, IL-10, TNF-a, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. Treatment with 5 mg/kg AZT resulted in reduced MPO (p˂0.05) and IL-1b (p˂0.05) levels and increased in Il-10 levels (p˂0.05). It was observed a reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and a increased expression of OPG in the animals subjected to experimental periodontitis and threated with AZT (5 mg/kg). Conclusions: These findings suggest an anti-inflammatory and anti-reabsortive effects of AZT on ligature-induced periodontitis in rats.
Resumo:
Obesity is increasing worldwide and is triggered, at least in part, by enhanced caloric intake. Food intake is regulated by a complex mechanism involving the hypothalamus and hindbrain circuitries. However, evidences have showing that reward systems are also important in regulating feeding behavior. In this context, amygdala is considered a key extra-hypothalamic area regulating feeding behavior in human beings and rodents. This review focuses on the regulation of food intake by amygdala and the mechanisms of insulin resistance in this brain area. Similar to the hypothalamus the anorexigenic effect of insulin is mediated via PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway in the amygdala. Insulin decreases NPY (neuropeptide Y) and increases oxytocin mRNA levels in the amygdala. High fat diet and saturated fatty acids induce inflammation, ER (endoplasmic reticulum) stress and the activation of serine kinases such as PKCθ (protein kinase C theta), JNK (c-Jun N-terminal kinase) and IKKβ (inhibitor of nuclear factor kappa-B kinase beta) in the amygdala, which have an important role in insulin resistance in this brain region. Overexpressed PKCθ in the CeA (central nucleus of amygdala) of rats increases weight gain, food intake, insulin resistance and hepatic triglycerides content. The inhibition of ER stress ameliorates insulin action/signaling, increases oxytocin and decreases NPY gene expression in the amygdala of high fat feeding rodents. Those data suggest that PKCθ and ER stress are main mechanisms of insulin resistance in the amygdala of obese rats and play an important role regulating feeding behavior.
Resumo:
Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.
Resumo:
As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.
Resumo:
Objectives: Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. Methods: Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. Results: Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. Conclusions: These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome.
Resumo:
The number of molecules acting on bone turn over rapidly increasing. The idea to use them on bones erosions is not new, however this year a new molecule confirms the suitability of such an approach with the demonstration of efficency in both postmenopausal osteoporosis as well as in the prevention of bone erosions in rheumatoid arthritis. Denosumab, a human monoclonal antibody against RANKL (Receptor Activator of Nuclear factor-KB ligand), decreases the fracture risk in postmenopausal osteoporosis and prevents new bone erosions in rheumatoid arthritis. Of simple use, it appears to act rapidly, to be efficient with a sustain benefit. The tolerance seems excellent, and now we'll have just to wait for its licensing.
Resumo:
Efficient initiation of SV40 DNA replication requires transcription factors that bind auxiliary sequences flanking the minimally required origin. To evaluate the possibility that transcription factors may activate SV40 replication by acting on the chromatin structure of the origin, we used an in vivo replication system in which we targeted GAL4 fusion proteins to the minimally required origin. We found that the proline-rich transcriptional activation domain of nuclear factor I (NF-I), which has been previously shown to interact with histone H3, specifically activates replication. Evaluation of a series of deletion and point mutants of NF-I indicates that the H3-binding domain and the replication activity coincide perfectly. Assays with other transcription factors, such as Sp1, confirmed the correlation between the interaction with H3 and the activation of replication. These findings imply that transcription factors such as NF-I can activate SV40 replication via direct interaction with chromatin components, thereby contributing to the relief of nucleosomal repression at the SV40 origin.