820 resultados para reactive ion etching
Resumo:
In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.
Resumo:
Mouse monoclonal antibodies (mAbs) were raised against the major capsid protein, L1, of human papillomavirus type 16 (HPV16), produced in Escherichia coil with the expression plasmid pTrcL1. Epitope specificity could be assigned to 11 of these 12 antibodies using a series of linear peptides and fusion proteins from HPV16. One mAb (MC53) recognized a novel linear epitope that appears to be unique to the HPV16 genotype. A further 11 mAbs were characterized as recognizing novel and previously defined linear and conformational epitopes shared among more than one HPV genotype. The apparently genotype specific mAb could be useful for the development of diagnostic tests for vegetative virus infection in clinical specimens. (C) 1998 Academic Press.
Resumo:
We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.
Resumo:
We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.
Resumo:
Carbohydrate-deficient transferrin (CDT) has emerged as the best new marker for alcohol abuse. Recently plasma immunoglobulin A (IgA) reactivity with acetaldehyde (AcH)-modified proteins, or the modified proteins per se, have been proposed as a markers for high levels of alcohol consumption. In this study, we have compared CDT, IgA reactivity with AcH adducts (IgA ASR), and AcH-modified albumin with conventional markers of high alcohol intake in groups with well-defined drinking histories, The plasma activity of ALT, AST, and gamma-glutamyltransferase increased steadily with increasing alcohol consumption, CDT and AcH-modified albumin showed a similar pattern, whereas IgA ASR appeared only to be elevated after a threshold level of consumption had been reached, Neither CDT IgA ASR or AcH-modified albumin correlated strongly with any of the conventional markers or each other. This study shows that CDT, IgA ASR, AcH-modified albumin, and the conventional markers are not related, but suggests that the concurrent use of CDT and IgA ASR may lead to better identification of high alcohol intake.
Resumo:
We consider two different kinds of fluctuations in an ion trap potential: external fluctuating electrical fields, which cause statistical movement (wobbling) of the ion relative to the center of the trap, and fluctuations of the spring constant, which an due to fluctuations of the ac component of the potential applied in the Paul trap for ions. We write down master equations for both cases and, averaging out the noise, obtain expressions for the heating of the ion. We compare our results to previous results for far-off resonance optical traps and heating in ion traps. The effect of fluctuating external electrical fields for a quantum gate operation (controlled-NOT) is determined and the fidelity for that operation derived. [S1050-2947(99)06005-9].
Resumo:
We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
The tetraalcohol 2,3,5,6-endo,endo,endo,endo-tetrakis(hydroxymethyl]bicyclo[2.2.1]heptane (tetol, 1) has been prepared and crystallises readily as the lithium(I) complex [Li(1)(2)]Cl, forming an oligomeric multi-chain structure in which pairs of alcohols from two crystallographically independent tetol molecules bind lithium ions tetrahedrally. However, formation of monomeric structures in solution is inferred from electrospray mass spectroscopy, which has also shown evidence of exchange of lithium ion in the complexed species by added alkaline earth ions. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We show how entangled qubits can be encoded as entangled coherent states of two-dimensional center-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.
Resumo:
We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.
Resumo:
Background-C- reactive protein (CRP) levels have been shown to predict a number of cardiovascular outcomes. CRP levels have also been found to be elevated in patients with abdominal aortic aneurysms (AAAs). The aim of this study was to assess the relation between CRP levels and rates of expansion of small AAAs. Methods and Results-A cohort of men with small aneurysms was identified in a trial of screening with ultrasound scanning. After initial screening, men were rescanned at 6- to 12-month intervals. CRP levels were measured at the first follow-up visit. Rates of expansion and risk factors for expansion were assessed with the use of data from 545 men who attended for at least 1 scan after CRP levels were measured. These men were followed for a median of 48 (range, 5 to 69) months. The mean annual rate of expansion was 1.6 mm. The median CRP level was 2.6 mg/L in men with the smaller AAAs (30 to 39 mm, n=433) compared with 3.5 mg/L in men with larger AAAs (40 to 54 mm, n=112) (P=0.007). The multivariate age-adjusted logistic model confirmed initial aortic diameter to be the only factor associated with rapid expansion with an odds ratio of 7.2 (95% CI, 4.3,12.2) for an initial diameter of 40 to 54 mm relative to one of 30 to 39 mm. Conclusions-Most small aneurysms expand slowly. CRP levels are elevated in larger aneurysms but do not appear to be associated with rapid expansion. The most useful predictor of aneurysmal expansion in men is aortic diameter.