975 resultados para random number generator
Resumo:
A neural network was used to map three PID operating regions for a two-input two-output steam generator system. The network was used in stand alone feedforward operation to control the whole operating range of the process, after being trained from the PID controllers corresponding to each control region. The network inputs are the plant error signals, their integral, their derivative and a 4-error delay train.
Resumo:
We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces.
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.
Resumo:
The induction of classification rules from previously unseen examples is one of the most important data mining tasks in science as well as commercial applications. In order to reduce the influence of noise in the data, ensemble learners are often applied. However, most ensemble learners are based on decision tree classifiers which are affected by noise. The Random Prism classifier has recently been proposed as an alternative to the popular Random Forests classifier, which is based on decision trees. Random Prism is based on the Prism family of algorithms, which is more robust to noise. However, like most ensemble classification approaches, Random Prism also does not scale well on large training data. This paper presents a thorough discussion of Random Prism and a recently proposed parallel version of it called Parallel Random Prism. Parallel Random Prism is based on the MapReduce programming paradigm. The paper provides, for the first time, novel theoretical analysis of the proposed technique and in-depth experimental study that show that Parallel Random Prism scales well on a large number of training examples, a large number of data features and a large number of processors. Expressiveness of decision rules that our technique produces makes it a natural choice for Big Data applications where informed decision making increases the user’s trust in the system.
Resumo:
We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A structure-dynamic approach to cortical systems is reported which is based on the number of paths and the accessibility of each node. The latter measurement is obtained by performing self-avoiding random walks in the respective networks, so as to simulate dynamics, and then calculating the entropies of the transition probabilities for walks starting from each node. Cortical networks of three species, namely cat, macaque and humans, are studied considering structural and dynamical aspects. It is verified that the human cortical network presents the highest accessibility and number of paths (in terms of z-scores). The correlation between the number of paths and accessibility is also investigated as a mean to quantify the level of independence between paths connecting pairs of nodes in cortical networks. By comparing the cortical networks of cat, macaque and humans, it is verified that the human cortical network tends to present the largest number of independent paths of length larger than four. These results suggest that the human cortical network is potentially the most resilient to brain injures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the asymptotic properties of the number of open paths of length n in an oriented rho-percolation model. We show that this number is e(n alpha(rho)(1+o(1))) as n ->infinity. The exponent alpha is deterministic, it can be expressed in terms of the free energy of a polymer model, and it can be explicitly computed in some range of the parameters. Moreover, in a restricted range of the parameters, we even show that the number of such paths is n(-1/2)We (n alpha(rho))(1+o(1)) for some nondegenerate random variable W. We build on connections with the model of directed polymers in random environment, and we use techniques and results developed in this context.
Resumo:
We study random walks systems on Z whose general description follows. At time zero, there is a number N >= 1 of particles at each vertex of N, all being inactive, except for those placed at the vertex one. Each active particle performs a simple random walk on Z and, up to the time it dies, it activates all inactive particles that it meets along its way. An active particle dies at the instant it reaches a certain fixed total of jumps (L >= 1) without activating any particle, so that its lifetime depends strongly on the past of the process. We investigate how the probability of survival of the process depends on L and on the jumping probabilities of the active particles.
Resumo:
We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.
Resumo:
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)