1000 resultados para psychologische (in)flexibiliteit
Resumo:
Caffeine has already been used as an indicator of anthropogenic impacts, especially the ones related to the disposal of sewage in water bodies. In this work, the presence of caffeine has been correlated with the estrogenic activity of water samples measured using the BLYES assay. After testing 96 surface water samples, it was concluded that caffeine can be used to prioritize samples to be tested for estrogenic activity in water quality programs evaluating emerging contaminants with endocrine disruptor activity.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.
Resumo:
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Resumo:
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.
Resumo:
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Resumo:
Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.
Resumo:
The aim of this study was to evaluate fat substitute in processing of sausages prepared with surimi of waste from piramutaba filleting. The formulation ingredients were mixed with the fat substitutes added according to a fractional planning 2(4-1), where the independent variables, manioc starch (Ms), hydrogenated soy fat (F), texturized soybean protein (Tsp) and carrageenan (Cg) were evaluated on the responses of pH, texture (Tx), raw batter stability (RBS) and water holding capacity (WHC) of the sausage. Fat substitutes were evaluated in 11 formulations and the results showed that the greatest effects on the responses were found to Ms, F and Cg, being eliminated from the formulation Tsp. To find the best formulation for processing piramutaba sausage was made a complete factorial planning of 2(3) to evaluate the concentrations of fat substitutes in an enlarged range. The optimum condition found for fat substitutes in the sausages formulation were carrageenan (0.51%), manioc starch (1.45%) and fat (1.2%).
Resumo:
Obesity is associated with development of the cardiorenal metabolic syndrome, which is a constellation of risk factors, such as insulin resistance, inflammatory response, dyslipidemia, and high blood pressure that predispose affected individuals to well-characterized medical conditions such as diabetes, cardiovascular and kidney chronic disease. The study was designed to establish relationship between metabolic and inflammatory disorder, renal sodium retention and enhanced blood pressure in a group of obese subjects compared with age-matched, lean volunteers. The study was performed after 14 h overnight fast after and before OGTT in 13 lean (BMI 22.92 ± 2.03 kg/m(2)) and, 27 obese (BMI 36.15 ± 3.84 kg/m(2)) volunteers. Assessment of HOMA-IR and QUICKI index were calculated and circulating concentrations of TNF-α, IL-6 and C-reactive protein, measured by immunoassay. THE STUDY SHOWS THAT A HYPERINSULINEMIC (HI: 10.85 ± 4.09 μg/ml) subgroup of well-characterized metabolic syndrome bearers-obese subjects show higher glycemic and elevated blood pressure levels when compared to lean and normoinsulinemic (NI: 5.51 ± 1.18 μg/ml, P < 0.027) subjects. Here, the combination of hyperinsulinemia, higher HOMA-IR (HI: 2.19 ± 0.70 (n = 12) vs. LS: 0.83 ± 0.23 (n = 12) and NI: 0.98 ± 0.22 (n = 15), P < 0.0001) associated with lower QUICKI in HI obese when compared with LS and NI volunteers (P < 0.0001), suggests the occurrence of insulin resistance and a defect in insulin-stimulated peripheral action. Otherwise, the adiponectin measured in basal period was significantly enhanced in NI subjects when compared to HI groups (P < 0.04). The report also showed a similar insulin-mediated reduction of post-proximal urinary sodium excretion in lean (LS: 9.41 ± 0.68% vs. 6.38 ± 0.92%, P = 0.086), and normoinsulinemic (NI: 8.41 ± 0.72% vs. 5.66 ± 0.53%, P = 0.0025) and hyperinsulinemic obese subjects (HI: 8.82 ± 0.98% vs. 6.32 ± 0.67%, P = 0.0264), after oral glucose load, despite elevated insulinemic levels in hyperinsulinemic obeses. In conclusion, this study highlights the importance of adiponectin levels and dysfunctional inflammatory modulation associated with hyperinsulinemia and peripheral insulin resistance, high blood pressure, and renal dysfunction in a particular subgroup of obeses.
Resumo:
The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. hastatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting silhouettes from the canopy and surrounding vegetation, thus providing orientation cues. Contrary to the plain floor of the round arena, chemical cues may be important for marking bifurcated arboreal routes. This experimental demonstration of the use of visual cues by a predominantly nocturnal arboreal ant provides important information for comparative studies on the evolution of spatial orientation behavior in ants. This article is part of a Special Issue entitled: Neotropical Behaviour.
Resumo:
Harmony is one of the main objectives in surgical and orthodontic treatment and this harmony must be present in the smile, as well as in the face. The aim of the present study was to assess the perceptions of professionals and laypersons in relation to the harmony of the smile of patients with or without vertical maxillary alterations. Sixty observers (oral and maxillofacial surgeons, orthodontists and laypersons) reported the degree of harmony of six smiles using an objective questionnaire and the participants indicated if there was a need for corrective surgery or not. The classification of observers was recorded on a Likert scale from 1 to 5. Mixed regression was used to determine differences between the three groups. Statistically significant differences were found only for the harmony of the smile between the oral and maxillofacial surgeons and laypersons, with laypersons being more critical when assessing the smile. There was no statistical difference between the other groups for the harmony of the smile or the indication of corrective surgery. The patterns of greater or lesser harmony determined by observers during the smile were similar to those found in the literature as the ideal standard in relation to vertical maxillary positioning. Laypersons had a tendency to be more critical in relation to facial harmony than surgeons, although no statistical differences were found in the other groups in relation to the harmony of the smile or indication for the corrective surgery. In addition, the patterns of greater or lesser harmony of the smile determined by the participants were similar to those found in the literature as the ideal standard in relation to vertical maxillary positioning. Overall, the present study demonstrates that adequate interaction between surgeons, orthodontists and laypersons is essential in order to achieve facial harmony with orthodontic and/or surgical treatment. Opinion of specialists and laypersons about the smile in relation to the vertical positioning of the maxilla.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.
Resumo:
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).