386 resultados para proteinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P aeruginosa metalloproteinases, which can affect different biological functions of elafin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

fA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. fA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also fA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous fA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully fA1122 resistant. Our data thus conclusively demonstrated that the fA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One novel Kunitz BPTI-like peptide designated as BBPTI-1, with chymotrypsin inhibitory activity was identified from the venom of Burmese Daboia russelii siamensis. It was purified by three steps of chromatography including gel filtration, cation exchange and reversed phase. A partial N-terminal sequence of BBPTI-1, HDRPKFCYLPADPGECLAHMRSF was obtained by automated Edman degradation and a Ki value of 4.77. nM determined. Cloning of BBPTI-1 including the open reading frame and 3' untranslated region was achieved from cDNA libraries derived from lyophilized venom using a 3' RACE strategy. In addition a cDNA sequence, designated as BBPTI-5, was also obtained. Alignment of cDNA sequences showed that BBPTI-5 exhibited an identical sequence to BBPTI-1 cDNA except for an eight nucleotide deletion in the open reading frame. Gene variations that represented deletions in the BBPTI-5 cDNA resulted in a novel protease inhibitor analog. Amino acid sequence alignment revealed that deduced peptides derived from cloning of their respective precursor cDNAs from libraries showed high similarity and homology with other Kunitz BPTI proteinase inhibitors. BBPTI-1 and BBPTI-5 consist of 60 and 66 amino acid residues respectively, including six conserved cysteine residues. As these peptides have been reported to have influence on the processes of coagulation, fibrinolysis and inflammation, their potential application in biomedical contexts warrants further investigation. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wound healing, angiogenesis and hair follicle maintenance are often impaired in the skin of diabetic patients, but the pathogenesis has not been well understood. Here, we report that circulation levels of kallistatin, a member of the serine proteinase inhibitor (SERPIN) superfamily with anti-angiogenic activities, were elevated in Type 2 diabetic patients with diabetic vascular complications. To test the hypothesis that elevated kallistatin levels could contribute to a wound healing deficiency via inhibition of Wnt/β-catenin signaling, we generated kallistatin-transgenic (KS-TG) mice. KS-TG mice had reduced cutaneous hair follicle density, microvascular density, and panniculus adiposus layer thickness as well as altered skin microvascular hemodynamics and delayed cutaneous wound healing. Using Wnt reporter mice, our results showed that Wnt/β-catenin signaling is suppressed in dermal endothelium and hair follicles in KS-TG mice. Lithium, a known activator of β-catenin via inhibition of glycogen synthase kinase-3β, reversed the inhibition of Wnt/β-catenin signaling by kallistatin and rescued the wound healing deficiency in KS-TG mice. These observations suggest that elevated circulating anti-angiogenic serpins in diabetic patients may contribute to impaired wound healing through inhibition of Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling, at a level downstream of Wnt receptors, may ameliorate the wound healing deficiency in diabetic patients.Journal of Investigative Dermatology accepted article preview online, 24 January 2014. doi:10.1038/jid.2014.40.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy has the potential to provide safe and targeted therapies for a variety of diseases. A range of intracellular gene delivery vehicles have been proposed for this purpose. Non-viral vectors are a particularly attractive option and among them cationic peptides have emerged as promising candidates. For the pharmaceutical formulation and application to clinical studies it is necessary to quantify the amount of pDNA condensed with the delivery system. There is a severe deficiency in this area, thus far no methods have been reported specifically for pDNA condensed with cationic peptide to form nanoparticles. The current study seeks to address this and describes the evaluation of a range of disruption agents to extract DNA from nanoparticles formed by condensation with cationic fusogenic peptides RALA and KALA. Only proteinase K exhibited efficient and reproducible results and compatibility with the PicoGreen reagent based quantification assay. Thus we report for the first time a simple and reliable method that can quantify the pDNA content in pDNA cationic peptide nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).

Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.

Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.

Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including cystic fibrosis (CF) however, its detection and quantification in biological samples is confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes, resulting in an over-estimation of the target protease. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel immunoassay (NE-Tag ELISA), incorporating an activity dependent ProteaseTag™ and a specific antibody step, which is selective and specific for the capture of active NE. The objective of this study was to clinically validate NE-Tag ELISA for the detection of active NE in sputum from CF patients. Sputum (n=45) was recovered from CF patients hospitalised for acute exacerbation. Sol was recovered and analysed for NE activity using the NE-Tag ELISA and two fluorogenic substrate-based assays [1. Suc-AAPV-AMC (Sigma) and 2. InnozymeTM Immunocapture assay (Calbiochem)]. NE activity between assays and with a range of clinical parameters was correlated.A highly significant correlation was shown between assays. NE activity (NE-Tag) further correlated appropriately with clinical parameters: inversely with FEV1 (p = 0.036) and positively with CRP (p = 0.035), neutrophils and total white cell counts (p < 0.001). The InnozymeTM assay showed similar correlations with the clinical parameters (with the exception of CRP). No correlations with any of the clinical parameters were observed when NE was measured using the standard fluorogenic substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dehydration of the airway surface liquid (ASL) and the resultant decline in function of the mucociliary escalator in cystic fibrosis airways is largely underpinned by the excessive flux of Na+ and water though ENaC. Proteolysis of the endogenous  and  subunits of epithelial sodium channels (ENaC) by channel activating proteases (CAPS) is the key regulatory mechanism for channel activation. Recent reports highlight that (1) CFTR (cystic fibrosis transmembrane conductance regulator) normally protects ENaC from the action of proteases and (2) a stark imbalance in proteases/protease inhibitor levels in CF airway cultures favour activation of normally inactive ENaC. The current study examines the potential therapeutic benefit of CAPS/ENaC inhibition in CF airways.
Our group has developed a panel of active-site directed affinity-based probes which target and inhibit trypsin-like proteases (potential CAPS); including the broad-spectrum inhibitor QUB-TL1. We have utilised this compound to interrogate the impact of trypsin-like protease inhibition on ENaC activity in differentiated primary airway epithelial cell cultures.
Electrophysiological data demonstrate QUB-TL1 selectively and irreversibly binds to extracellularly located trypsin-like proteases resulting in impaired ENaC-mediated Na+ transport. Visualisation of ENaC at the apical surface compartment of primary airway epithelial cells shows a large reduction in a low molecular weight (processed and active) form of ENaC, which was found to be abundant in untreated CF cultures. Consistent with the reduction in ENaC activity observed, QUB-TL1 treatment was subsequently shown to increase ASL height (performed in collaboration with Royal College of Surgeons in Ireland).
Our results are consistent with the hypothesis that targeting the CAPS-ENaC signalling axis may restore the depleted ASL seen in CF airways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard identification systems usually ensure that biopsy material is correctly associated with a given patient. Sometimes, as when a tumor is unexpectedly found, the provenance (proof of origin) of a tissue sample may be questioned; the tissue may have been mislabelled or contaminated with tissue from another patient. Techniques used to confirm tissue provenance include comparing either tissue markers of gender or ABO blood groups; however, these methods have weak confirmatory power. Recently, the use of DNA-based polymerase chain reaction (PCR) techniques has been reported. Paired, formalin-fixed, paraffin-embedded, 10 microns tissue sections were selected from 17 patients, 8 of whom had carcinoma, either by dividing a biopsy section, using sequential biopsies, or sequential biopsy and autopsy tissue. The resulting 36 samples were coded before analysis. In two additional cases, 1-mm fragments of tumor from one patient were included in the tissue block of benign tissue from another patient, the tumor fragments were identified on hematoxylin-and-eosin-stained sections, separately scraped off the glass slide, and analyzed. Tissue from two clinical cases, one of suspected mislabelling and one with a suspected carry-over of malignant tissue were also investigated. Short tandem repeat sequences (STR) or microsatellites, are 2-5 base pair repeats that vary in their repeat number between individuals. This variation (polymorphism) can be assessed using a PCR. A panel of markers of 3 STRs; ACPP, INT 2, and CYP 19 (on chromosomes 3, 11, and 15, respectively) were used. DNA was isolated from the samples after xylene deparaffinization and proteinase digestion, and was then amplified in a radioactive PCR using primers selected to give a product size ranging from 136-178 bases. Amplified products were electrophoresed on denaturing polyacrylamide gels, dried, and autoradiographed. DNA segments were successfully extracted from all samples but one, which was fixed in Bouin's fluid. By comparing allele sizes from the panel, all tissue pairs (other than the Bouin's pair) were successfully matched, the 1-mm tumor fragments were correctly assigned, and the two clinical problems were solved. STRs are highly informative and robust markers, well suited to PCR of small portions of tissue sections, and are an effective method to confirm the provenance of benign and malignant biopsy and autopsy material.