889 resultados para prescribed fire
Resumo:
The original pasture ecosystems of southern inland Queensland ranged from treeless grasslands on cracking clays through grassy woodlands of varying density on a great range of soil types to those competing at the dynamic edges of forests and scrubs. Fire, both wild and aboriginal-managed, was a major factor, along with rainfall extremes, in shaping the pastures and tree:grass balance. Seedling recruitment was driven by rainfall extremes, availability of germinable seed and growing space, with seed availability and space being linked to the timing and intensity of recent fires and rain. The impact of insects, diseases, severe wind and hailstorms on recruitment should not be underestimated. The more fertile soils had denser grass growth, greater fire frequency and thinner tree cover than infertile soils, except where trees were so dense that grass growth was almost eliminated. The pastures were dominated by perennial tussock grasses of mid-height but included a wide array of minor herbaceous species whose abundance was linked to soil type and recent seasonal conditions. Many were strongly perennial with Asteraceae, Fabaceae, Malvaceae, Cyperaceae and Goodeniaceae most common in an environment, which can experience effective rainfall at any time of year. The former grassland communities that are now productive farming lands are not easily returned to their original composition. However, conservation of remnant examples of original pasture types is very achievable provided tree density is controlled, prescribed burning and grazing are used and rigorous control of invasive, exotic species is undertaken. This should be done with a clear understanding that significant short-and medium-term fluctuations in botanical composition are normal.
Resumo:
The paper revisits estimates of cost/benefit for eradication in Australia provided in 2001 which were based largely on information about a US ecosystem. The study had two major components; spread modelling using a cellular automation model provided by Joe Scanlan and an impact analysis undertaken by the remaining authors. The revised figures provided in this study increased the damage estimate from $2.8 billion to $45 billion and the benefit-cost ratio of eradication efforts improved from 25:1 to 390:1.
Resumo:
Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.
Resumo:
Digital Image
Resumo:
postwar version of F 38362
Resumo:
This guide applies to spotted gum - ironbark forests and woodlands. Topics covered in the guide include: *The spotted gum - ironbark ecosystem; *General effects of burning practices; *Understandinng the effects of fire management; *Timber production; *Livestock grazing production; *Balancing production and biodiversity; *Fire management planning for the property; *Recommendtaions for landholders. These guidelines have been prepared for spotted gum - ironbark forests and woodlands and are not necessarily applicable to other forest and woodland ecosystems. The recommendations provided in these guidelines should be used as a guide only.
Resumo:
The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.
Resumo:
It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.
Resumo:
The mechanism of fire retardant action of mono- and diammonium phosphates on polystyrene has been investigated. Ignition delay and mass burning rate studies reveal that the phosphates bring down both parameters considerably though to different extents. This has been adequately explained on the basis of the existing combustion models and physicochemical behavior of the material. Similar to their action on cellulosic materials, phosphates bring about fire retardancy in polystyrene via char formation. This is suggested to occur through a series of processes consisting of initial peroxide formation, decomposition to alcohols and aldehydes, formation of alkyl-phosphate esters, dehydration and subsequent char formation. Infrared and mass spectral studies support this mechanism.
Resumo:
Fire is an important driver of nutrient cycling in savannas. Here, we determined the impact of fire frequency on total and soluble soil nitrogen (N) pools in tropical savanna. The study sites consisted of 1-ha experimental plots near Darwin, Australia, which remained unburnt for at least 14 years or were burnt at 1-, 2- or 5-year intervals over the past 6 years. Soil was analysed from patches underneath tree canopies and in inter-canopy patches at 1, 12, 28, 55 and 152 days after fire. Patch type had a significant effect on all soil N pools, with greater concentrations of total and soluble (nitrate, ammonium, amino acids) N under tree canopies than inter-canopy patches. The time since the last fire had no significant effect on N pools. Fire frequency similarly did not affect total soil N but it did influence soluble soil N. Soil amino acids were most prominent in burnt savanna, ammonium was highest in infrequently burnt (5-year interval) savanna and nitrate was highest in unburnt savanna. We suggest that the main effect of fire on soil N relations occurs indirectly through altered tree-grass dynamics. Previous studies have shown that high fire frequencies reduce tree cover by lowering recruitment and increasing mortality. Our findings suggest that these changes in tree cover could result in a 30% reduction in total soil N and 1060% reductions in soluble N pools. This finding is consistent with studies from savannas globally, providing further evidence for a general theory of patchiness as a key driver of nutrient cycling in the savanna biome.
Resumo:
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every two years (2yrB), burning every four years (4yrB) and no burning (NB). C:N ratios in freshly fallen litter were 29-42% higher and C:P ratios were 6-25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N:P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N:P ratios were similar to the overall litter N:P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2yrB than NB while 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72±2% mass remaining at the end of experiment) than for 4yrB (59±3%) and NB (62±3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C:N:P stoichiometry and in microbial biomass N:P ratio and enzymatic activities. These data indicate that fire induced a transient shift to N-limited ecosystem conditions during the post-fire recovery phase. This article is protected by copyright. All rights reserved.
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.