848 resultados para prefrontal cortex (PFC)
Resumo:
Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive “anticipatory imagery” at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in “training” frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.
Resumo:
The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
Situationally adaptive behavior relies on the identification of relevant target stimuli, the evaluation of these with respect to the current context and the selection of an appropriate action. We used functional magnetic resonance imaging (fMRI) to disentangle the neural networks underlying these processes within a single task. Our results show that activation of mid-ventrolateral prefrontal cortex (PFC) reflects the perceived presence of a target stimulus regardless of context, whereas context-appropriate evaluation is subserved by mid-dorsolateral PFC. Enhancing demands on response selection by means of response conflict activated a network of regions, all of which are directly connected to motor areas. On the midline, rostral anterior paracingulate cortex was found to link target detection and response selection by monitoring for the presence of behaviorally significant conditions. In summary, we provide new evidence for process-specific functional dissociations in the frontal lobes. In target-centered processing, target detection in the VLPFC is separable from contextual evaluation in the DLPFC. Response-centered processing in motor-associated regions occurs partly in parallel to these processes, which may enhance behavioral efficiency, but it may also lead to reaction time increases when an irrelevant response tendency is elicited.
Resumo:
The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat's locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC's baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization.
Resumo:
The aim of this study was to investigate the effects of inner and heard speech on cerebral hemodynamics and oxygenation in the anterior prefrontal cortex (PFC) using functional near-infrared spectroscopy and to test whether potential effects were caused by alterations in the arterial carbon dioxide pressure (PaCO2). Twenty-nine healthy adult volunteers performed six different tasks of inner and heard speech according to a randomized crossover design. During the tasks, we generally found a decrease in PaCO2 (only for inner speech), tissue oxygen saturation (StO2), oxyhemoglobin ([O2Hb]), total hemoglobin ([tHb]) concentration and an increase in deoxyhemoglobin concentration ([HHb]). Furthermore, we found significant relations between changes in [O2Hb], [HHb], [tHb], or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. We conclude that changes in breathing during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech, no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], and [tHb] suggest that changes in PaCO2 were also involved here. Different verse types (hexameter and alliteration) led to different changes in [tHb], implying different brain activations. In conclusion, StO2, [O2Hb], [HHb], and [tHb] are affected by interplay of both PaCO2 reactivity and functional brain activity.
Resumo:
The aim was to investigate the effect of mechanical pain stimulation at the lower back on hemodynamic and oxygenation changes in the prefrontal cortex (PFC) assessed by functional near-infrared spectroscopy (fNIRS) and on the partial pressure of end-tidal carbon dioxide ( PetCO 2) measured by capnography. 13 healthy subjects underwent three measurements (M) during pain stimulation using pressure pain threshold (PPT) at three locations, i.e., the processus spinosus at the level of L4 (M1) and the lumbar paravertebral muscles at the level of L1 on the left (M2) and the right (M3) side. Results showed that only in the M2 condition the pain stimulation elicited characteristic patterns consisting of (1) a fNIRS-derived decrease in oxy- and total hemoglobin concentration and tissue oxygen saturation, an increase in deoxy-hemoglobin concentration, (2) a decrease in the PetCO 2 response and (3) a decrease in coherence between fNIRS parameters and PetCO 2 responses in the respiratory frequency band (0.2-0.5 Hz). We discuss the comparison between M2 vs. M1 and M3, suggesting that the non-significant findings in the two latter measurements were most likely subject to effects of the different stimulated tissues, the stimulated locations and the stimulation order. We highlight that PetCO 2 is a crucial parameter for proper interpretation of fNIRS data in experimental protocols involving pain stimulation. Together, our data suggest that the combined fNIRS-capnography approach has potential for further development as pain monitoring method, such as for evaluating clinical pain treatment.
Resumo:
The aim of the present study was (i) to investigate the effect of inner speech on cerebral hemodynamics and oxygenation, and (ii) to analyze if these changes could be the result of alternations of the arterial carbon dioxide pressure (PaCO2). To this end, in seven adult volunteers, we measured changes of cerebral absolute [O2Hb], [HHb], [tHb] concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)), as well as changes in end-tidal CO2 (PETCO2), a reliable and accurate estimate of PaCO2. Each subject performed three different tasks (inner recitation of hexameter (IRH) or prose (IRP) verses) and a control task (mental arithmetic (MA)) on different days according to a randomized crossover design. Statistical analysis was applied to the differences between pre-baseline, two tasks, and four post-baseline periods. The two brain hemispheres and three tasks were tested separately. During the tasks, we found (i) PETCO2 decreased significantly (p < 0.05) during the IRH ( ~ 3 mmHg) and MA ( ~ 0.5 mmHg) task. (ii) [O2Hb] and StO2 decreased significantly during IRH ( ~ 1.5 μM; ~ 2 %), IRP ( ~ 1 μM; ~ 1.5 %), and MA ( ~ 1 μM; ~ 1.5 %) tasks. During the post-baseline period, [O2Hb] and [tHb] of the left PFC decreased significantly after the IRP and MA task ( ~ 1 μM and ~ 2 μM, respectively). In conclusion, the study showed that inner speech affects PaCO2, probably due to changes in respiration. Although a decrease in PaCO2 is causing cerebral vasoconstriction and could potentially explain the decreases of [O2Hb] and StO2 during inner speech, the changes in PaCO2 were significantly different between the three tasks (no change in PaCO2 for MA) but led to very similar changes in [O2Hb] and StO2. Thus, the cerebral changes cannot solely be explained by PaCO2.
Resumo:
The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
Background: The aim of the present study was to contributing to researching physiological effects of arts speech therapy by (i) investigating effects of inner and heard speech on cerebral hemodynamics and oxygenation, and (ii) analyzing if these changes were affected by alterations of the arterial carbon dioxide pressure (PaCO2). Methods: In 29 healthy adult volunteers we measured changes in cerebral absolute oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)) using functional near-infrared spectroscopy (fNIRS) as well as changes in end-tidal CO2 (PETCO2) using capnography. Each subject performed six different tasks: three types of task modalities, i.e. inner speech, heard speech from a person and heard speech from a record, and, two recitation texts, i.e. hexameter and alliteration on different days according to a randomized crossover design. Statistical analysis was applied to the differences between the baseline, two task and four recovery periods. The two brain hemispheres, i.e. left and right PFC, and six tasks were tested separately. Results: During the tasks we found in general a decrease in PETCO2 (significantly only for inner speech), StO2, [O2Hb], [tHb] as well as in an increase in [HHb]. There was a significant difference between hexameter and alliteration. Particularly, the changes in [tHb] at the left PFC during tasks and after them were statistically different. Furthermore we found significant relations between changes in [O2Hb], [HHb], [tHb] or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. Conclusions: Changes in breathing (hyperventilation) during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], [tHb] suggest that changes in PaCO2 were also relevant here. Different verse types (hexameter, alliteration) led to different changes in [tHb]. Consequently, StO2, [O2Hb], [HHb] and [tHb] are affected by interplay of both PaCO2 reactivity and task dependent functional brain activity.
Resumo:
Self-control is defined as the process in which thoughts, emotions, or prepotent responses are inhibited to efficiently enact a more focal goal. Self-control not only allows for more adaptive individual decision making but also promotes adaptive social decision making. In this chapter, we examine a burgeoning area of interdisciplinary research: the neuroscience of self-control in social decision making. We examine research on self-control in complex social contexts examined from a social neuroscience perspective. We review correlational evidence from neuroimaging studies and causal evidence from neuromodulation studies (i.e., brain stimulation). We specifically highlight research that shows that self-control involves the lateral prefrontal cortex (PFC) across a number of social domains and behaviors. Research has also begun to directly integrate nonsocial with social forms of self-control, showing that the basic neurobiological processes involved in stopping a motor response appear to be involved in social contexts that require self-control. Further, neural traits, such as baseline activation in the lateral PFC, can explain sources of individual differences in self-control capacity. We explore whether techniques that change brain functioning could target neural mechanisms related to self-control capacity to potentially enhance self-control in social behavior. Finally, we discuss several research questions ripe for examination. We broadly suggest that future research can now turn to exploring how neural traits and situational affordances interact to impact self-control in social decision making in order to continue to elucidate the processes that allow people to maintain and realize stable goals in a dynamic and often uncertain social environment.
Resumo:
While it is commonly assumed that brain systems receive and process information from other brain systems, there are few examples of tractable behaviors that allow such interactions to be studied. With the experiments presented in this dissertation we provide evidence that trace eyelid conditioning, a simple form of associative learning, is mediated by cerebellar learning in response to the output of persistent neural activity in the prefrontal cortex (PFC) and thus may be useful in analyses of PFC-cerebellar interactions. In a series of stimulation and reversible inactivation experiments we provide evidence that trace eyelid conditioning is mediated by cerebellar learning in response to a learned forebrain-driven input. Specifically, we provide evidence that this input is driven by the medial PFC and persists through the stimulus free trace interval of trace eyelid conditioning. In the next set of experiments we show that directly presenting the cerebellum with a pattern of input that mimics the classic persistent activity of PFC neurons reconstitutes trace eyelid conditioning, as assessed by a number of stringent tests. Finally, in set of reversible inactivation experiments, we provide evidence that bidirectional learning during trace eyelid conditioning involves the omission of the persistent, PFC-driven input that the cerebellum learns and responds to during trace eyelid conditioning. Given that persistent activity in PFC is often associated with working memory, these experiments suggest that trace eyelid conditioning may be useful in analyses of working memory mechanisms, cerebellar information processing and their interaction. To facilitate future analyses, we conclude with a working hypothesis of forebrain-cerebellum interactions during trace eyelid conditioning that addresses how persistent activity in PFC is induced and how the cerebellum decodes and uses PFC-driven input. ^
Resumo:
There is considerable evidence from animal studies that gonadal steroid hormones modulate neuronal activity and affect behavior. To study this in humans directly, we used H215O positron-emission tomography to measure regional cerebral blood flow (rCBF) in young women during three pharmacologically controlled hormonal conditions spanning 4–5 months: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate (Lupron), Lupron plus estradiol replacement, and Lupron plus progesterone replacement. Estradiol and progesterone were administered in a double-blind cross-over design. On each occasion positron-emission tomography scans were performed during (i) the Wisconsin Card Sorting Test, a neuropsychological test that physiologically activates prefrontal cortex (PFC) and an associated cortical network including inferior parietal lobule and posterior inferolateral temporal gyrus, and (ii) a no-delay matching-to-sample sensorimotor control task. During treatment with Lupron alone (i.e., with virtual absence of gonadal steroid hormones), there was marked attenuation of the typical Wisconsin Card Sorting Test activation pattern even though task performance did not change. Most strikingly, there was no rCBF increase in PFC. When either progesterone or estrogen was added to the Lupron regimen, there was normalization of the rCBF activation pattern with augmentation of the parietal and temporal foci and return of the dorsolateral PFC activation. These data directly demonstrate that the hormonal milieu modulates cognition-related neural activity in humans.
Resumo:
To investigate the types of memory traces recovered by the medial temporal lobe (MTL), neural activity during veridical and illusory recognition was measured with the use of functional MRI (fMRI). Twelve healthy young adults watched a videotape segment in which two speakers alternatively presented lists of associated words, and then the subjects performed a recognition test including words presented in the study lists (True items), new words closely related to studied words (False items), and new unrelated words (New items). The main finding was a dissociation between two MTL regions: whereas the hippocampus was similarly activated for True and False items, suggesting the recovery of semantic information, the parahippocampal gyrus was more activated for True than for False items, suggesting the recovery of perceptual information. The study also yielded a dissociation between two prefrontal cortex (PFC) regions: whereas bilateral dorsolateral PFC was more activated for True and False items than for New items, possibly reflecting monitoring of retrieved information, left ventrolateral PFC was more activated for New than for True and False items, possibly reflecting semantic processing. Precuneus and lateral parietal regions were more activated for True and False than for New items. Orbitofrontal cortex and cerebellar regions were more activated for False than for True items. In conclusion, the results suggest that activity in anterior MTL regions does not distinguish True from False, whereas activity in posterior MTL regions does.
Resumo:
Self-criticism is strongly correlated with a range of psychopathologies, such as depression, eating disorders and anxiety. In contrast, self-reassurance is inversely associated with such psychopathologies. Despite the importance of self-judgements and evaluations, little is known about the neurophysiology of these internal processes. The current study therefore used a novel fMRI task to investigate the neuronal correlates of self-criticism and self-reassurance. Participants were presented statements describing two types of scenario, with the instruction to either imagine being self-critical or self-reassuring in that situation. One scenario type focused on a personal setback, mistake or failure, which would elicit negative emotions, whilst the second was of a matched neutral event. Self-criticism was associated with activity in lateral prefrontal cortex (PFC) regions and dorsal anterior cingulate (dAC), therefore linking self-critical thinking to error processing and resolution, and also behavioural inhibition. Self-reassurance was associated with left temporal pole and insula activation, suggesting that efforts to be self-reassuring engage similar regions to expressing compassion and empathy towards others. Additionally, we found a dorsal/ventral PFC divide between an individual's tendency to be self-critical or self-reassuring. Using multiple regression analyses, dorsolateral PFC activity was positively correlated with high levels of self-criticism (assessed via self-report measure), suggesting greater error processing and behavioural inhibition in such individuals. Ventrolateral PFC activity was positively correlated with high self-reassurance. Our findings may have implications for the neural basis of a range of mood disorders that are characterised by a preoccupation with personal mistakes and failures, and a self-critical response to such events.
Resumo:
RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory.