963 resultados para predictive regression
Resumo:
Older adults, especially those acutely ill, are vulnerable to developing malnutrition due to a range of risk factors. The high prevalence and extensive consequences of malnutrition in hospitalised older adults have been reported extensively. However, there are few well-designed longitudinal studies that report the independent relationship between malnutrition and clinical outcomes after adjustment for a wide range of covariates. Acutely ill older adults are exceptionally prone to nutritional decline during hospitalisation, but few reports have studied this change and impact on clinical outcomes. In the rapidly ageing Singapore population, all this evidence is lacking, and the characteristics associated with the risk of malnutrition are also not well-documented. Despite the evidence on malnutrition prevalence, it is often under-recognised and under-treated. It is therefore crucial that validated nutrition screening and assessment tools are used for early identification of malnutrition. Although many nutrition screening and assessment tools are available, there is no universally accepted method for defining malnutrition risk and nutritional status. Most existing tools have been validated amongst Caucasians using various approaches, but they are rarely reported in the Asian elderly and none has been validated in Singapore. Due to the multiethnicity, cultural, and language differences in Singapore older adults, the results from non-Asian validation studies may not be applicable. Therefore it is important to identify validated population and setting specific nutrition screening and assessment methods to accurately detect and diagnose malnutrition in Singapore. The aims of this study are therefore to: i) characterise hospitalised elderly in a Singapore acute hospital; ii) describe the extent and impact of admission malnutrition; iii) identify and evaluate suitable methods for nutritional screening and assessment; and iv) examine changes in nutritional status during admission and their impact on clinical outcomes. A total of 281 participants, with a mean (+SD) age of 81.3 (+7.6) years, were recruited from three geriatric wards in Tan Tock Seng Hospital over a period of eight months. They were predominantly Chinese (83%) and community-dwellers (97%). They were screened within 72 hours of admission by a single dietetic technician using four nutrition screening tools [Tan Tock Seng Hospital Nutrition Screening Tool (TTSH NST), Nutritional Risk Screening 2002 (NRS 2002), Mini Nutritional Assessment-Short Form (MNA-SF), and Short Nutritional Assessment Questionnaire (SNAQ©)] that were administered in no particular order. The total scores were not computed during the screening process so that the dietetic technician was blinded to the results of all the tools. Nutritional status was assessed by a single dietitian, who was blinded to the screening results, using four malnutrition assessment methods [Subjective Global Assessment (SGA), Mini Nutritional Assessment (MNA), body mass index (BMI), and corrected arm muscle area (CAMA)]. The SGA rating was completed prior to computation of the total MNA score to minimise bias. Participants were reassessed for weight, arm anthropometry (mid-arm circumference, triceps skinfold thickness), and SGA rating at discharge from the ward. The nutritional assessment tools and indices were validated against clinical outcomes (length of stay (LOS) >11days, discharge to higher level care, 3-month readmission, 6-month mortality, and 6-month Modified Barthel Index) using multivariate logistic regression. The covariates included age, gender, race, dementia (defined using DSM IV criteria), depression (defined using a single question “Do you often feel sad or depressed?”), severity of illness (defined using a modified version of the Severity of Illness Index), comorbidities (defined using Charlson Comorbidity Index, number of prescribed drugs and admission functional status (measured using Modified Barthel Index; MBI). The nutrition screening tools were validated against the SGA, which was found to be the most appropriate nutritional assessment tool from this study (refer section 5.6) Prevalence of malnutrition on admission was 35% (defined by SGA), and it was significantly associated with characteristics such as swallowing impairment (malnourished vs well-nourished: 20% vs 5%), poor appetite (77% vs 24%), dementia (44% vs 28%), depression (34% vs 22%), and poor functional status (MBI 48.3+29.8 vs 65.1+25.4). The SGA had the highest completion rate (100%) and was predictive of the highest number of clinical outcomes: LOS >11days (OR 2.11, 95% CI [1.17- 3.83]), 3-month readmission (OR 1.90, 95% CI [1.05-3.42]) and 6-month mortality (OR 3.04, 95% CI [1.28-7.18]), independent of a comprehensive range of covariates including functional status, disease severity and cognitive function. SGA is therefore the most appropriate nutritional assessment tool for defining malnutrition. The TTSH NST was identified as the most suitable nutritional screening tool with the best diagnostic performance against the SGA (AUC 0.865, sensitivity 84%, specificity 79%). Overall, 44% of participants experienced weight loss during hospitalisation, and 27% had weight loss >1% per week over median LOS 9 days (range 2-50). Wellnourished (45%) and malnourished (43%) participants were equally prone to experiencing decline in nutritional status (defined by weight loss >1% per week). Those with reduced nutritional status were more likely to be discharged to higher level care (adjusted OR 2.46, 95% CI [1.27-4.70]). This study is the first to characterise malnourished hospitalised older adults in Singapore. It is also one of the very few studies to (a) evaluate the association of admission malnutrition with clinical outcomes in a multivariate model; (b) determine the change in their nutritional status during admission; and (c) evaluate the validity of nutritional screening and assessment tools amongst hospitalised older adults in an Asian population. Results clearly highlight that admission malnutrition and deterioration in nutritional status are prevalent and are associated with adverse clinical outcomes in hospitalised older adults. With older adults being vulnerable to risks and consequences of malnutrition, it is important that they are systematically screened so timely and appropriate intervention can be provided. The findings highlighted in this thesis provide an evidence base for, and confirm the validity of the current nutrition screening and assessment tools used among hospitalised older adults in Singapore. As the older adults may have developed malnutrition prior to hospital admission, or experienced clinically significant weight loss of >1% per week of hospitalisation, screening of the elderly should be initiated in the community and continuous nutritional monitoring should extend beyond hospitalisation.
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil. At the same time, the European airline industry entered a period of substantive deregulation. This period witnessed opportunities for low-cost carriers to become more competitive in the market as a result of these combined events. To help assess airline performance in the aftermath of these events, this paper provides new evidence of technical efficiency for 42 national and international airlines in 2006 using the data envelopment analysis (DEA) bootstrap approach first proposed by Simar and Wilson (J Econ, 136:31-64, 2007). In the first stage, technical efficiency scores are estimated using a bootstrap DEA model. In the second stage, a truncated regression is employed to quantify the economic drivers underlying measured technical efficiency. The results highlight the key role played by non-discretionary inputs in measures of airline technical efficiency.
Resumo:
INTRODUCTION: Workforce planning for first aid and medical coverage of mass gatherings is hampered by limited research. In particular, the characteristics and likely presentation patterns of low-volume mass gatherings of between several hundred to several thousand people are poorly described in the existing literature. OBJECTIVES: This study was conducted to: 1. Describe key patient and event characteristics of medical presentations at a series of mass gatherings, including events smaller than those previously described in the literature; 2. Determine whether event type and event size affect the mean number of patients presenting for treatment per event, and specifically, whether the 1:2,000 deployment rule used by St John Ambulance Australia is appropriate; and 3. Identify factors that are predictive of injury at mass gatherings. METHODS: A retrospective, observational, case-series design was used to examine all cases treated by two Divisions of St John Ambulance (Queensland) in the greater metropolitan Brisbane region over a three-year period (01 January 2002-31 December 2004). Data were obtained from routinely collected patient treatment forms completed by St John officers at the time of treatment. Event-related data (e.g., weather, event size) were obtained from event forms designed for this study. Outcome measures include: total and average number of patient presentations for each event; event type; and event size category. Descriptive analyses were conducted using chi-square tests, and mean presentations per event and event type were investigated using Kruskal-Wallis tests. Logistic regression analyses were used to identify variables independently associated with injury presentation (compared with non-injury presentations). RESULTS: Over the three-year study period, St John Ambulance officers treated 705 patients over 156 separate events. The mean number of patients who presented with any medical condition at small events (less than or equal to 2,000 attendees) did not differ significantly from that of large (>2,000 attendees) events (4.44 vs. 4.67, F = 0.72, df = 1, 154, p = 0.79). Logistic regression analyses indicated that presentation with an injury compared with non-injury was independently associated with male gender, winter season, and sporting events, even after adjusting for relevant variables. CONCLUSIONS: In this study of low-volume mass gatherings, a similar number of patients sought medical treatment at small (<2,000 patrons) and large (>2,000 patrons) events. This demonstrates that for low-volume mass gatherings, planning based solely on anticipated event size may be flawed, and could lead to inappropriate levels of first-aid coverage. This study also highlights the importance of considering other factors, such as event type and patient characteristics, when determining appropriate first-aid resourcing for low-volume events. Additionally, identification of factors predictive of injury presentations at mass gatherings has the potential to significantly enhance the ability of event coordinators to plan effective prevention strategies and response capability for these events.
Resumo:
In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.
Resumo:
The motivation of the study stems from the results reported in the Excellence in Research for Australia (ERA) 2010 report. The report showed that only 12 universities performed research at or above international standards, of which, the Group of Eight (G8) universities filled the top eight spots. While performance of universities was based on number of research outputs, total amount of research income and other quantitative indicators, the measure of efficiency or productivity was not considered. The objectives of this paper are twofold. First, to provide a review of the research performance of 37 Australian universities using the data envelopment analysis (DEA) bootstrap approach of Simar and Wilson (2007). Second, to determine sources of productivity drivers by regressing the efficiency scores against a set of environmental variables.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.
Resumo:
The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Spirituality and religiosity have traditionally had a troubled relationship with psychology. However, a new field of study has emerged that is examining the health benefits of spirituality and religion. The current study examined the relationship between spirituality, religiosity and coping among a group of university students facing exams. Participants completed the Spiritual Well-Being Scale, Age Universal Religious Orientation Scale, Spiritual Transcendence Scale, Brief COPE, Test Anxiety Inventory, and State Trait Anxiety Inventory. Regression analyses found that existential well-being as measured by the Spiritual Well Being Scale was the best predictor of reduced anxiety. Maladaptive coping, however, was found to be inversely related to spirituality and religiosity, but highly predictive of elevated anxiety in this sample. Strengths and limitations of this study along with recommendations for further research are made.