987 resultados para pre-dispersal seed predation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity-ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m(-2) and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m(-2). One year after seed addition, local plant species richness had increased on average by six species m(-2) (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m(-2) (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump-shaped model appears to be the limiting outline of the natural diversity-productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seed dispersal is one of the most important mechanisms shaping biodiversity, and animals are one of the key dispersal vectors. Animal seed dispersal can directly or indirectly be altered by invasive organisms through the establishment of new or the disruption of existing seed dispersal interactions. So far it is known for a few gastropod species that they ingest and defecate viable plant seeds and consequently act as seed dispersers, referred to as gastropodochory. In a multi-species experiment, consisting of five different plant species and four different gastropod species, we tested with a fully crossed design whether gastropodochory is a general mechanism across native gastropod species, and whether it is altered by the invasive alien slug species Arion lusitanicus. Specifically, we hypothesized that a) native gastropod species consume the seeds from all tested plant species in equal numbers (have no preference), b) the voracious invasive alien slug A. lusitanicus – similarly to its herbivore behaviour – consumes a higher amount of seeds than native gastropods, and that c) seed viability is equal among different gastropod species after gut passage. As expected all tested gastropod species consumed all tested plant species. Against our expectation there was a difference in the amount of consumed seeds, with the largest and native mollusk Helix pomatia consuming most seeds, followed by the invasive slug and the other gastropods. Seed damage and germination rates did not differ after gut passage through different native species, but seed damage was significantly higher after gut passage through the invasive slug A. lusitanicus, and their germination rates were significantly reduced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines the seed dispersal spectrum of the tropical dry forests of Southern Ecuador, in an effort to contribute to the knowledge of the complex dynamics of tropical dry forests. Seed dispersal spectrum was described for a total number of 160 species. Relationships of dispersal syndromes with plant growth form and climatic seasonality were explored. For a subset of 97 species, we determined whether dispersal spectrum changes when species abundance, in addition to species number, is taken into account. The same subset was used to relate dispersal syndromes with the environmental conditions. Zoochorous species dominated in the studied community. When considering the individual abundance of each species, however, anemochory was the prevalent dispersal syndrome. We found a significant difference in the frequency of dispersal syndromes among plant growth forms, with epizoochory only occurring in shrub species. The dispersal spectrum was dependent on climatic seasonality. The largest proportion of anemochorous species fructified during the dry season, while zoochorous diaspores dominated during the rainy season. A fourth-corner analysis indicated that the seed dispersal spectrum of Southern Ecuador dry forests is controlled by environmental conditions such as annual precipitation, annual temperature range or topography. Our results suggest that spatio-temporal changes in the environmental conditions may affect important ecological processes for dispersal. Thus, the predominance of one syndrome or another may depend on the spatial variation of environmental conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various environmental factors may influence the foraging behaviour of seed dispersers which could ultimately affect the seed dispersal process. We examined whether moonlight levels and the presence or absence of rodentshelter affect rodentseedremoval (rate, handling time and time of removal) and seedselection (size and species) among seven oak species. The presence or absence of safe microhabitats was found to be more important than moonlight levels in the removal of seeds. Bright moonlight caused a different temporal distribution of seedremoval throughout the night but only affected the overall removal rates in open microhabitats. Seeds were removed more rapidly in open microhabitat (regardless of the moon phase), decreasing the time allocated to seed discrimination and translocation. Only in open microhabitats did increasing levels of moonlight decrease the time allocated to selection and removal of seeds. As a result, a more precise seedselection was made under shelter, owing to lower levels of predation risk. Rodent ranking preference for species was identical between full/new moon in shelter but not in open microhabitats. For all treatments, species selection by rodents was much stronger than size selection. Nevertheless, heavy seeds, which require more energy and time to be transported, were preferentially removed under shelter, where there is no time restriction to move the seeds. Our findings reveal that seedselection is safety dependent and, therefore, microhabitats in which seeds are located (sheltered versus exposed) and moonlight levels in open areas should be taken into account in rodent food selection studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural regeneration faces increasing difficulties in dry forests from the Mediterranean basin, including for normally well-regenerating species such as maritime pine (Pinus pinaster Aiton). In this paper, we studied female fertility, seed dispersal and spread rates in P. pinaster from the Spanish Northern Plateau, where natural regeneration failure is a main concern for forest managers. For this purpose we periodically collected data from seed traps and trees located at two core locations across several years. We found significant variation in interannual cone production, with the best seed trees being the same across years. In addition, we found highly skewed distributions of female reproductive effort and large fertility differences across stands located few kilometres away. Annual seed dispersal kernels fitted lognormal or 2Dt models depending on the stand analysed, with median dispersal distances between 14 and 25 m. Kernels fitted for maximum dispersal periods showed an outstanding intraseasonal variation of median dispersal distances, from 10 to 54 m, in association to variable patterns of rainfall and maximum wind speed. The amount of seed produced appeared to be enough to guarantee the natural regeneration of the stands during the typical 20-year regeneration period. Colonisation simulations concluded that Mediterranean maritime pine has a notable dispersion capacity, which is strongly influenced by levels of fecundity and, especially, by the number and frequency of long-distance dispersal events. The latter play a key role in tree dispersion processes through enlarging the occupied area and fostering the invasion of abandoned crop land.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The process of seed dispersal of many animal-dispersed plants is frequently mediated by a small set of biotic agents. However, the contribution that each of these dispersers makes to the overall recruitment may differ largely, with important ecological and management implications for the population viability and dynamics of the species implied in these interactions. In this paper, we compared the relative contribution of two local guilds of scatter-hoarding animals with contrasting metabolic requirements and foraging behaviours (rodents and dung beetles) to the overall recruitment of two Quercus species co-occurring in the forests of southern Spain. For this purpose, we considered not only the quantity of dispersed seeds but also the quality of the seed dispersal process. The suitability for recruitment of the microhabitats where the seeds were deposited was evaluated in a multi-stage demographic approach. The highest rates of seed handling and predation occurred in those microhabitats located under shrubs, mostly due to the foraging activity of rodents. However, the probability of a seed being successfully cached was higher in microhabitats located beneath a tree canopy as a result of the feeding behaviour of beetles. Rodents and beetles showed remarkable differences in their effectiveness as local acorn dispersers. Quantitatively, rodents were much more important than beetles because they dispersed the vast majority of acorns. However, they were qualitatively less effective because they consumed a high proportion of them (over 95%), and seeds were mostly dispersed under shrubs, a less suitable microhabitat for short-term recruitment of the two oak species. Our findings demonstrate that certain species of dung beetles (such as Thorectes lusitanicus), despite being quantitatively less important than rodents, can act as effective local seed dispersers of Mediterranean oak species. Changes in the abundance of beetle populations could thus have profound implications for oak recruitment and community dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells-a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims The relationship between biodiversity and ecosystem functioning is among the most active areas of ecological research. Furthermore, enhancing the diversity of degraded ecosystems is a major goal in applied restoration ecology. In grasslands, many species may be locally absent due to dispersal or microsite limitation and may therefore profit from mechanical disturbance of the resident vegetation. We established a seed addition and disturbance experiment across several grassland sites of different land use to test whether plant diversity can be increased in these grasslands. Additionally, the experiment will allow us testing the consequences of increased plant diversity for ecosystem processes and for the diversity of other taxa in real-world ecosystems. Here we present details of the experimental design and report results from the first vegetation survey one year after disturbance and seed addition. Moreover, we tested whether the effects of seed addition and disturbance varied among grassland depending on their land use or pre-disturbance plant diversity. Methods A full-factorial experiment was installed in 73 grasslands in three regions across Germany. Grasslands were under regular agricultural use, but varied in the type and the intensity of management, thereby representing the range of management typical for large parts of Central Europe. The disturbance treatment consisted of disturbing the top 10 cm of the sward using a rotavator or rotary harrow. Seed addition consisted of sowing a high-diversity seed mixture of regional plant species. These species were all regionally present, but often locally absent, depending on the resident vegetation composition and richness of each grassland. Important findings One year after sward disturbance it had significantly increased cover of bare soil, seedling species richness and numbers of seedlings. Seed addition had increased plant species richness, but only in combination with sward disturbance. The increase in species richness, when both seed addition and disturbance was applied, was higher at high land-use intensity and low resident diversity. Thus, we show that at least the early recruitment of many species is possible also at high land-use intensity, indicating the potential to restore and enhance biodiversity of species-poor agricultural grasslands. Our newly established experiment provides a unique platform for broad-scale research on the land-use dependence of future trajectories of vegetation diversity and composition and their effects on ecosystem functioning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invasive alien species are among the primary causes of biodiversity change globally, with the risks thereof broadly understood for most regions of the world. They are similarly thought to be among the most significant conservation threats to Antarctica, especially as climate change proceeds in the region. However, no comprehensive, continent-wide evaluation of the risks to Antarctica posed by such species has been undertaken. Here we do so by sampling, identifying, and mapping the vascular plant propagules carried by all categories of visitors to Antarctica during the International Polar Year's first season (2007-2008) and assessing propagule establishment likelihood based on their identity and origins and on spatial variation in Antarctica's climate. For an evaluation of the situation in 2100, we use modeled climates based on the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios Scenario A1B [Nakicenovic N, Swart R, eds (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK)]. Visitors carrying seeds average 9.5 seeds per person, although as vectors, scientists carry greater propagule loads than tourists. Annual tourist numbers (~33,054) are higher than those of scientists (~7,085), thus tempering these differences in propagule load. Alien species establishment is currently most likely for the Western Antarctic Peninsula. Recent founder populations of several alien species in this area corroborate these findings. With climate change, risks will grow in the Antarctic Peninsula, Ross Sea, and East Antarctic coastal regions. Our evidence-based assessment demonstrates which parts of Antarctica are at growing risk from alien species that may become invasive and provides the means to mitigate this threat now and into the future as the continent's climate changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.