953 resultados para poset of Hausdorff topologies
Resumo:
Lattice materials are characterized at the microscopic level by a regular pattern of voids confined by walls. Recent rapid prototyping techniques allow their manufacturing from a wide range of solid materials, ensuring high degrees of accuracy and limited costs. The microstructure of lattice material permits to obtain macroscopic properties and structural performance, such as very high stiffness to weight ratios, highly anisotropy, high specific energy dissipation capability and an extended elastic range, which cannot be attained by uniform materials. Among several applications, lattice materials are of special interest for the design of morphing structures, energy absorbing components and hard tissue scaffold for biomedical prostheses. Their macroscopic mechanical properties can be finely tuned by properly selecting the lattice topology and the material of the walls. Nevertheless, since the number of the design parameters involved is very high, and their correlation to the final macroscopic properties of the material is quite complex, reliable and robust multiscale mechanics analysis and design optimization tools are a necessary aid for their practical application. In this paper, the optimization of lattice materials parameters is illustrated with reference to the design of a bracket subjected to a point load. Given the geometric shape and the boundary conditions of the component, the parameters of four selected topologies have been optimized to concurrently maximize the component stiffness and minimize its mass. Copyright © 2011 by ASME.
Resumo:
This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies. © 2007 IEEE.
Resumo:
Multimode polymer waveguides are an attractive transmission medium for board-level optical links as they provide high bandwidth, relaxed alignment tolerances, and can be directly integrated onto conventional printed circuit boards. However, the performance of multimode waveguide components depends on the launch conditions at the component input, complicating their use in topologies that require the concatenation of multiple multimode components. This paper presents key polymer components for a multichannel optical bus and reports their performance under different launch conditions, enabling useful rules that can be used to design complex interconnection topologies to be derived. The components studied are multimode signal splitters and combiners, 90°-crossings, S-bends, and 90°-bends. By varying the width of the splitter arms, a splitting ratio between 1% and 95% is achieved from the 1 × 2 splitters, while low-loss signal combining is demonstrated with the waveguide combiners. It is shown that a 3 dB improvement in the combiner excess loss can be achieved by increasing the bus width by 50 μm. The worst-case insertion loss of 50 × 100 μm waveguide crossings is measured to be 0.1 dB/crossing. An empirical method is proposed and used to estimate the insertion losses of on-board optical paths of a polymeric four-channel optical bus module. Good agreement is achieved between the predicted and measured values. Although the components and empirical method have been tailored for use in a multichannel optical bus architecture, they can be used for any on-board optical interconnection topology. © 1983-2012 IEEE.
Resumo:
The sinipercids represent a group of 12 species of freshwater percoid fish, including nine in Siniperca and three species in Coreoperca. Despite several classification attempts and a preliminary molecular phylogeny, the phylogenetic relationships and systematic position of sinipercids remained still unsolved. The complete cytochrome b gene sequences from nine sinipercid species four non-sinipercid fish species were cloned, and a total of 12 cyt b sequences from 10 species of sinipercids and 11 cyt b sequences from 10 species of non-sinipercid fish also in Perciformes were included in the phylogenetic analysis. As expected, the two genera Siniperca and Coreoperca within sinipercids are recovered as monophyletic. However, nine species representing Moronidae, Serranidae, Centropomidae, Acropomatidae, Emmelichtyidae, Siganidae and Centrarchidae included in the present study are all nested between Coreoperca and Siniperca, which provides marked evidence for a non-monophyly of sinipercid fishes. Coreoperca appears to be closest to Centrachus representing the family Centrarchidae. Coreoperca whiteheadi and C. herzi are sibling species, which together are closely related to C. kawamebari. In the Siniperca, the node between S. roulei and the remaining species is the most ancestral, followed by that of S. fortis. S. chuatsi and S. kneri are sibling species, sister to S. obscura. However, the sinipercids do not seem to have a very clear phylogenetic history, for different methods of phylogenetic reconstruction result in different tree topologies, and the only conclusive result in favor of a paraphyletic origin of the two sinipercid genera is the parametric bootstrap test. The paraphyly of Sinipercidae may suggest that the "synapomorphs" such as cycloid scales, upon which this family is based, were independently derived at least twice within sinipercid fishes, and further study should be carried out to include the other two Siniperca species and to incorporate other genes.
Resumo:
Several recent molecular phylogenetic studies of the sisorid catfishes (Sisoridae) have challenged some aspects of their traditional taxonomy and cladistic hypotheses of their phylogeny. However, disagreement with respect to relationships within this family in these studies highlights the need for additional data and analyses. Here we subjected 15 taxa representing 12 sisorids genera to comprehensive phylogenetic analyses using the second intron of low-copy nuclear S7 ribosomal protein (rpS7) gene and the mitochondrial 16S rRNA gene segments both individually and in combination. The competing sisorid topologies were then tested by using the approximately unbiased (AU) test and the Shimodaira-Hasegawa (SH) test. Our results support previously suggested polyphyly of Pareuchiloglanis. The genus Pseudecheneis is likely to be nested in the glyptosternoids and Glaridoglanis might be basal to the tribe Glyptosternini. However, justified by AU and SH test, the sister-group relationship between Pseudecheneis and the monophyletic glyptosternoids cannot be rejected based on the second intron of rpS7 gene and combined data analyses. It follows that both gene segments are not suitable for resolving the phylogenetic relationships within the sisorid catfishes. Overall, the second intron of rpS7 gene yielded poor phylogenetic performance when compared to 16S rRNA gene, the evolutionary hypothesis of which virtually agreed with the combined data analyses tree. This phenomenon can be explained by the insufficient length and fast saturation of substitutions in the second intron of rpS7 gene, due to substitution patterns such as frequent indels (insertion/deletion events) of bases in the sequences during the evolution.
Resumo:
The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characifonnes, Gymnotiformes), Siluriformes), Cyprinifionnes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Phylogenetic relationships within Metapenaeopsis remain largely unknown. The modern revision of the genus suggests that the shape of the petasma, followed by the presence of a stidulating organ, are the most important distinguishing taxonomic features. In the present study, phylogenetic relationships were studied among seven Metapenaeopsis species from the Indo-West Pacific based on partial sequences of mitochondrial 16S rRNA and cytochrome c oxidase I (COI) genes. Mean sequence divergence was 6.4% for 16S and 15.8% for COI. A strikingly large nucleotide distance (10.0% for 16S and 16.9% for COI) was recorded between M. commensalis, the only Indo-West Pacific species with a one-valved petasma, and the other species with a two-valved petasma. Phylogenetic analyses using neighbor-joining, maximum parsimony, and maximum likelihood generated mostly identical tree topologies in which M. commensalis is distantly related to the other species. Two clades were resolved for the remaining species, one with and the other without a stridulating organ, supporting the main groupings of the recent taxonomic revision. Results of the present study also indicate that the deep-water forms represent a relatively recent radiation in Metapenaeopsis.
Resumo:
A discrete dysprosium cubane has been prepared and structurally characterized Slow relaxation of magnetization in this complex is observed, which may stimulate further investigations into the dynamics of magnetization in lanthanide clusters with different topologies.
Resumo:
Complete mitochondrial genomes have proven extremely valuable in helping to understand the evolutionary relationships among metazoans. However, uneven taxon sampling may lead to unclear or even erroneous phylogenetic topologies. The decapod crustaceans are relatively well-sampled, but sampling is still uneven within this group. We have sequenced the mitochondrial genomes of two shrimps Litopenaeus vannamei and Fenneropenaeus chinensis. As seen in other metazoans, the genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and an AT-rich non-coding region. The gene arrangements are consistent with the pancrustacean ground pattern. Both the pattern of gene rearrangements and phylogenomic analyses using concatenated nucleic acid and amino acid sequences of the 13 mitochondrial protein-coding genes strengthened the support that Caridea and Palinura are primitive members of Pleocyemata. These sequences, in combination with two previously published penaeid mitochondrial genomes, suggest that genera within the family Penaeidae have the following relationship: (((Penaeits + Fenneropenaett.) + Litopeiiaelts) + Marsupenaeus). The analyses of nucleic acid and amino acid sequences of the mitochondrial genomes also strongly support the monophyly of Penaeidae, Brachyura and Pleocyemata. In addition, the analyses of the average Ka/Ks in the 13 mitochondrial protein-coding genes of penaeid shrimps indicated a strong purifying selection within this group.
Resumo:
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai-Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi.2. Nucleotide diversities (pi) were moderate (0.0024-0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018-0.0021) in populations from Qiadam Basin. It is probable that the low intra-population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history.3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise F-ST tests were significant, with non-significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north-west of the Qinghai-Tibetan Plateau. Analysis of molecular variance (AMOVA) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems.4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai-Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations.5. The significantly large negative F-s-value (-24.91, P < 0.01) of Fu's F-s-test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement.6. The results of this study indicate that each population from the Qinghai-Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.
Resumo:
R. Zwiggelaar and C.R. Bull, 'Optical determination of fractal dimensions using Fourier transforms', Optical Engineering 34 (5), 1325-1332 (1995)
Resumo:
This paper explores reasons for the high degree of variability in the sizes of ASes that have recently been observed, and the processes by which this variable distribution develops. AS size distribution is important for a number of reasons. First, when modeling network topologies, an AS size distribution assists in labeling routers with an associated AS. Second, AS size has been found to be positively correlated with the degree of the AS (number of peering links), so understanding the distribution of AS sizes has implications for AS connectivity properties. Our model accounts for AS births, growth, and mergers. We analyze two models: one incorporates only the growth of hosts and ASes, and a second extends that model to include mergers of ASes. We show analytically that, given reasonable assumptions about the nature of mergers, the resulting size distribution exhibits a power law tail with the exponent independent of the details of the merging process. We estimate parameters of the models from measurements obtained from Internet registries and from BGP tables. We then compare the models solutions to empirical AS size distribution taken from Mercator and Skitter datasets, and find that the simple growth-based model yields general agreement with empirical data. Our analysis of the model in which mergers occur in a manner independent of the size of the merging ASes suggests that more detailed analysis of merger processes is needed.
Resumo:
Research on the construction of logical overlay networks has gained significance in recent times. This is partly due to work on peer-to-peer (P2P) systems for locating and retrieving distributed data objects, and also scalable content distribution using end-system multicast techniques. However, there are emerging applications that require the real-time transport of data from various sources to potentially many thousands of subscribers, each having their own quality-of-service (QoS) constraints. This paper primarily focuses on the properties of two popular topologies found in interconnection networks, namely k-ary n-cubes and de Bruijn graphs. The regular structure of these graph topologies makes them easier to analyze and determine possible routes for real-time data than complete or irregular graphs. We show how these overlay topologies compare in their ability to deliver data according to the QoS constraints of many subscribers, each receiving data from specific publishing hosts. Comparisons are drawn on the ability of each topology to route data in the presence of dynamic system effects, due to end-hosts joining and departing the system. Finally, experimental results show the service guarantees and physical link stress resulting from efficient multicast trees constructed over both kinds of overlay networks.
Resumo:
The effectiveness of service provisioning in largescale networks is highly dependent on the number and location of service facilities deployed at various hosts. The classical, centralized approach to determining the latter would amount to formulating and solving the uncapacitated k-median (UKM) problem (if the requested number of facilities is fixed), or the uncapacitated facility location (UFL) problem (if the number of facilities is also to be optimized). Clearly, such centralized approaches require knowledge of global topological and demand information, and thus do not scale and are not practical for large networks. The key question posed and answered in this paper is the following: "How can we determine in a distributed and scalable manner the number and location of service facilities?" We propose an innovative approach in which topology and demand information is limited to neighborhoods, or balls of small radius around selected facilities, whereas demand information is captured implicitly for the remaining (remote) clients outside these neighborhoods, by mapping them to clients on the edge of the neighborhood; the ball radius regulates the trade-off between scalability and performance. We develop a scalable, distributed approach that answers our key question through an iterative reoptimization of the location and the number of facilities within such balls. We show that even for small values of the radius (1 or 2), our distributed approach achieves performance under various synthetic and real Internet topologies that is comparable to that of optimal, centralized approaches requiring full topology and demand information.
Resumo:
In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.