900 resultados para polyurethane, coatings, titanium substrates, endothelial cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of thrombospondin-1 (TSP-1) to the CD36 receptor inhibits angiogenesis and induces apoptosis in endothelial cells (EC). Conversely, matrix-bound TSP-1 supports vessel formation. In this study we analyzed the shear stress-dependent expression of TSP-1 and CD36 in endothelial cells in vitro and in vivo to reveal its putative role in the blood flow-induced remodelling of vascular networks. Shear stress was applied to EC using a cone-and-plate apparatus and gene expression was analyzed by RT-PCR, Northern and Western blot. Angiogenesis in skeletal muscles of prazosin-fed (50 mg/l drinking water; 4 d) mice was assessed by measuring capillary-to-fiber (C/F) ratios. Protein expression in whole muscle homogenates (WMH) or BS-1 lectin-enriched EC fractions (ECF) was analyzed by Western blot. Shear stress downregulated TSP-1 and CD36 expression in vitro in a force- and time-dependent manner sustained for at least 72 h and reversible by restoration of no-flow conditions. In vivo, shear stress-driven increase of C/F in prazosin-fed mice was associated with reduced expression of TSP-1 and CD36 in ECF, while TSP-1 expression in WMH was increased. Down-regulation of endothelial TSP-1/CD36 by shear stress suggests a mechanism for inhibition of apoptosis in perfused vessels and pruning in the absence of flow. The increase of extra-endothelial (e.g. matrix-bound) TSP-1 could support a splitting type of vessel growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrogation of the endothelial cell-specific semaphorin receptor PlexinD1 in zebrafish and mouse reveals semaphorin functions selectively affecting the cardiovascular system. Neuropilins team up with PlexinD1 to form a novel endothelial receptor complex for class 3 semaphorins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clostridium perfringens type C-induced enteritis necroticans is a rare but often fatal disease in humans. A consistent histopathological finding is an acute, deep necrosis of the small intestinal mucosa associated with acute vascular necrosis and massive haemorrhage in the lamina propria and submucosa. Retrospective immunohistochemical investigations of tissues from a diabetic adult who died of enteritis necroticans revealed endothelial localization of C. perfringens beta-toxin in small intestinal lesions. Our results indicate that vascular necrosis might be induced by a direct interaction between C. perfringens beta-toxin and endothelial cells and that targeted disruption of endothelial cells plays a role in the pathogenesis of enteritis necroticans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the process of cancer metastasis, the majority of circulating tumor cells arrest in microcapillary beds and then rapidly die. To study whether vascular endothelial cells can directly lyse tumor cells, we isolated vascular endothelial cells by perfusion of lungs from immunocompetent or nude mice. The cells were grown in culture, and then cloned and characterized. Cloned endothelial cells were incubated with several lymphokines and cytokines. Cells incubated with IFN-$\gamma$ and TNF lysed a variety of tumor cells with different metastatic potential. Mouse skin and lung fibroblasts treated with the same cytokines did not. Endothelial cell mediated tumor cell lysis was not due to different binding ability of tumor cells to cytokine treated and untreated endothelial monolayers. Kinetic studies demonstrated that the continuous presence of cytokines in the tumor-endothelial cocultures was necessary to produce maximal lysis of tumor cells. Target cell lysis was not due to the direct effects of IFN-$\gamma$ or TNF, since vascular endothelial cells isolated from the lung of nude mice lysed human melanoma cells that are sensitive or resistant to TNF. Cytokine treated endothelial cells produced a high level of nitric oxide, which is known to be cytotoxic to a variety of target cells. The level of nitric oxide production was directly correlated with the degree of tumor cell lysis. A specific inhibitor of nitric oxide synthesis(N$\sp{\rm G}$-monomethyl-L-arginine), completely inhibited production of nitric oxide and tumor cell lysis. Treatment of cytokine activated endothelial cells with dexamethasone also inhibited tumor cell lysis. This inhibition was independent of tumor-endothelial adhesion but correlated with inhibition of nitric oxide production. Collectively, these results suggest that vascular endothelial cells can directly destory tumor emboli and thus play an active role in the pathogenesis of cancer metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^