914 resultados para poly-L-lysine
Resumo:
The poly (l-lysine)-based SPL7013 dendrimer with naphthalene disulphonate surface groups blocks the entry of HIV-1 into target cells and is in clinical trials for development as a topical microbicide. Its mechanism of action against R5 HIV-1, the HIV-1 variant implicated in transmission across individuals, remains poorly understood. Using docking and fully atomistic MD simulations, we find that SPL7013 binds tightly to R5 gp120 in the gp120-CD4 complex but weakly to gp120 alone. Further, the binding, although to multiple regions of gp120, does not occlude the CD4 binding site on gp120, suggesting that SPL7013 does not prevent the binding of R5 gp120 to CD4. Using MD simulations to compute binding energies of several docked structures, we find that SPL7013 binding to gp120 significantly weakens the gp120-CD4 complex. Finally, we use steered molecular dynamics (SMD) to study the kinetics of the dissociation of the gp120-CD4 complex in the absence of the dendrimer and with the dendrimer bound in each of the several stable configurations to gp120. We find that SPL7013 significantly lowers the force required to rupture the gp120-CD4 complex and accelerates its dissociation. Taken together, our findings suggest that SPL7013 compromises the stability of the R5 gp120-CD4 complex, potentially preventing the accrual of the requisite number of gp120-CD4 complexes across the virus-cell interface, thereby blocking virus entry.
Resumo:
Background: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.
Resumo:
Purpose Retinal ganglion cells (RGCs) are exposed to injury in a variety of optic nerve diseases including glaucoma. However, not all cells respond in the same way to damage and the capacity of individual RGCs to survive or regenerate is variable. In order to elucidate factors that may be important for RGC survival and regeneration we have focussed on the extracellular matrix (ECM) and RGC integrin expression. Our specific questions were: (1) Do adult RGCs express particular sets of integrins in vitro and in vivo? (2) Can the nature of the ECM influence the expression of different integrins? (3) Can the nature of the ECM affect the survival of the cells and the length or branching complexity of their neurites? Methods Primary RGC cultures from adult rat retina were placed on glass coverslips treated with different substrates: Poly-L-Lysine (PL), or PL plus laminin (L), collagen I (CI), collagen IV (CIV) or fibronectin (F). After 10 days in culture, we performed double immunostaining with an antibody against beta III-Tubulin to identify the RGCs, and antibodies against the integrin subunits: alpha V, alpha 1, alpha 3, alpha 5, beta 1 or beta 3. The number of adhering and surviving cells, the number and length of the neurites and the expression of the integrin subunits on the different substrates were analysed. Results PL and L were associated with the greatest survival of RGCs while CI provided the least favourable conditions. The type of substrate affected the number and length of neurites. L stimulated the longest growth. We found at least three different types of RGCs in terms of their capacity to regenerate and extend neurites. The different combinations of integrins expressed by the cells growing on different substrata suggest that RGCs expressed predominantly alpha 1 beta 1 or alpha 3 beta 1 on L, alpha 1 beta 1 on CI and CIV, and alpha 5 beta 3 on F. The activity of the integrins was demonstrated by the phosphorylation of focal adhesion kinase (FAK). Conclusions Adult rat RGCs can survive and grow in the presence of different ECM tested. Further studies should be done to elucidate the different molecular characteristics of the RGCs subtypes in order to understand the possible different sensitivity of different RGCs to damage in diseases like glaucoma in which not all RGCs die at the same time.
Resumo:
By employing poly(ethylene glycol) (PEG) shielding and a polymer cushion to achieve air stability of the lipid membrane, we have analyzed PEG influence on dried membranes and the interaction with cholesterol. Small unilamellar vesicles (SUVs) formed by the mixture of 1,2-dimyristoylphosphatidylcholine (DMPC) with different molar fraction of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000)) adsorb and fuse into membranes on different polymer-modified silicon dioxide surfaces, including chitosan, poly(L-lysine) (PLL), and hyaluronic acid, Dried membranes arc further examined by ellipsometer and atomic force microscopy (AFM). Only chitosan can support a visible and uniform lipid array. The thickness of dry PEGylated lipid membrane is reduced gradually as the molar fraction of PEG increases. AFM scanning confirms the lipid membrane stacking for vesicles containing low PEG, and only a proper amount of PEG can maintain a single lipid hi lover; however, the air stability of the membrane will be destroyed if overloading. PEG. Cholesterol incorporation can greatly improve the structural stability of lipid membrane, especially for those containing high molar fraction of PEG. Different amounts of cholesterol influence the thickness and surface morphology of dried membrane.
Resumo:
DNA/poly-L-lysine (PLL) capsules were constructed through a layer-by-layer (LbL) self-assembly of DNA and PLL on CaCO3 microparticles, and then used as dual carriers for DNA and drug after dissolution of carbonate cores. The permeability of DNA/PLL microcapsules was investigated with fluorescence probes with different molecular weights by confocal microscopy. The result revealed that the fluorescence probes were able to penetrate the capsule walls even its molecular weight up to 150 kDa. The resultant capsules were used to load drug model molecules-fluorescein isothiocyanate (FITC)-dextran (4 kDa) via spontaneous deposition mechanism.
Resumo:
Autofluorescent single polyelectrolyte microcapsules, exemplified by poly-L-lysine (PLL), have been prepared through glutaraldehyde-mediated covalent layer-by-layer (LbL) assembly and subsequent core removal. CaCO3 microparticles were used as template cores for the LbL deposition and removed by treatment of ethylenediamine tetraacetic acid disodium salt (EDTA). The prepared microcapsules, without conjugating an exterior fluorochrome, exhibited evenly distributed fluorescence.
Resumo:
Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.
Resumo:
Dextran sulfate (DS)/poly-L-lysine (PLL) microcapsules are fabricated by an in situ coacervation method using DS-doped CaCO3 microparticles as templates. Twinned superstructures or spherical CaCO3 microparticles are produced depending on DS concentration in the starting Solution. DS/PLL microcapsules with ellipsoidal or spherical outline are obtained after removal of templates in disodium ethylene diamine tetraacetate dehydrate (EDTA) without PLL. Their shell thickness and negative surface charges increase with the DS weight percentage in the templates. The surface potential of DS/PLL microcapsules.
Resumo:
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.
Resumo:
In this study, an in vitro multicellular tumor spheroid model was developed using microencapsulation, and the feasibility of using the microencapsulated. multicellular tumor spheroid (MMTS) to test the effect of chemotherapeutic drugs was investigated. Human MCF-7 breast cancer cells were encapsulated in alginate-poly-L-lysine-alginate (APA) microcapsules, and a single multicellular spheroid 150 mu m in diameter was formed in the microcapsule after 5 days of cultivation. The cell morphology, proliferation, and viability of the MMTS were characterized using phase contrast microscopy, BrdU-Iabeling, MTT stain, calcein AM/ED-2 stain, and H&E stain. It demonstrated that the MMTS was viable and that the proliferating cells were mainly localized to the periphery of the cell spheroid and the apoptotic cells were in the core. The MCF-7 MMTS was treated with mitomycin C (MC) at a concentration of 0.1, 1, or 10 times that of peak plasma concentration (ppc) for up to 72 h. The cytotoxicity was demonstrated. clearly by the reduction in cell spheroid size and the decrease in cell viability. The MMTS was further used to screen the anticancer effect of chemotherapeutic drugs, treated with MC, adriamycin (ADM) and 5-fluorouracil (5-FU) at concentrations of 0.1, 1, and 10 ppc for 24, 48, and 72 h. MCF-7 monolayer culture was used as control. Similar to monolayer culture, the cell viability of MMTS was reduced after treatment with anticancer drugs. However, the inhibition rate of cell viability in MMTS was much lower than that in monolayer culture. The MMTS was more resistant to anticancer drugs than monolayer culture. The inhibition rates of cell viability were 68.1%, 45.1%, and 46.8% in MMTS and 95.1%, 86.8%, and 91.6% in monolayer culture treated with MC, ADM, and 5-FU at 10 ppc for 72 h, respectively. MC showed the strongest cytotoxicity in both MMTS and monolayer, followed by 5-FU and ADM. It demonstrated that the MMTS has the potential to be a rapid and valid in vitro model to screen chemotherapeutic drugs with a feature to mimic in vivo three-dimensional (3-D) cell growth pattern.
Resumo:
The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells.
Resumo:
Sensitivities to polycationic peptides and EDTA were compared in Yersinia enterocolitica pathogenic and environmental biogroups. As shown by changes in permeability to the fluorescent hydrophobic probe N-phenylnaphthylamine (NPN), the outer membranes (OMs) of pathogenic and environmental strains grown at 26 degrees C in standard broth were more resistant to poly-L-lysine, poly-L-ornithine, melittin, cecropin P1, polymyxin B, and EDTA than Escherichia coli OMs. At 37 degrees C, OMs of pathogenic biogroups were resistant to EDTA and polycations and OMs of environmental strains were resistant to EDTA whereas E. coli OMs were sensitive to both EDTA and polycations. Similar results were found when testing deoxycholate sensitivity after polycation exposure or when isogenic pairs with or without virulence plasmid pYV were compared. With bacteria grown without Ca++ available, OM permeability to NPN was drastically increased in pathogenic but not in environmental strains or E. coli. Under these conditions, OMs of pYV+ and pYV- cells showed small differences in NPN permeability but differences in polycation sensitivity could not be detected by fluorimetry. O:1,6 (environmental type) lipopolysaccharide (LPS), but not O:3 or O:8 LPS, was markedly rough at 37 degrees C, and this could explain the differences in polycation sensitivity. LPSs from serotypes O:3 and O:8 grown at 37 degrees C were more permeable to NPN than O:1,6 LPS, and O:8 LPS was resistant to polycation-induced permeabilization. These data suggest that LPSs relate to some but not all the OM differences described. It is hypothesized that the different OM properties of environmental and pathogenic biogroups reflect the adaptation of the latter biogroups to pathogenicity.
Resumo:
This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.
Resumo:
This paper investigates a series of dendrons based on the Newkome dendritic scaffold that displays a naturally occurring polyamine (spermine) on their surface. These dendrons have previously been shown to interact with DNA in a generation dependent manner with the more highly branched dendrons exhibiting a strong multivalency effect for the spermine surface groups. In this paper, we investigate the ability of these dendrons to transfect DNA into cells (human breast carcinoma cells, MDA-MB-231, and murine myoblast cells, C2C12) as determined by the luciferase assay. Although the dendrons are unable to transfect DNA in their own right, they are capable of delivering DNA in vitro when administered with chloroquine, which assists with escape from endocytic vesicles. The cytotoxicity of the dendrons was determined using the XTT assay, and it was shown that the dendrons were nontoxic either alone or in the presence of DNA. However, when administered with DNA and chloroquine, the most highly branched dendron did exhibit some cytotoxicity. This paper elucidates the relationship between in vitro transfection efficiency and toxicity. While transfection efficiencies are modest, the low toxicity of the dendrons, both in their own right, and in the presence of DNA, provides encouragement that this type of building block, which has a relatively high affinity for DNA, will provide a useful starting point for the further synthetic development of more effective gene transfection agents.
Resumo:
Disclosed are composites comprising regenerated cellulose, a first active substance, a second active substance, and a linker. Thus, microcryst. cellulose was dissolved in 1-butyl-3-methylimidazolium chloride using microwave pulse heating at 120-150°, cooled to 60° to form a super-cooled liq., 20% (based on cellulose) poly(L-lysine hydrobromide) was added therein, homogenized, cast onto a glass plate, the resulting film soaked in water for at least 24 h to leach residual from the film to give a reconstituted cellulose film, showing good transparency. [on SciFinder(R)]