172 resultados para plastid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z,13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by β-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles “oxylipin signatures.” Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the α-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA editing and cytoplasmic male sterility are two important phenomena in higher plant mitochondria. To determine whether correlations might exist between the two, RNA editing in different tissues of Sorghum bicolor was compared employing reverse transcription–PCR and subsequent sequence analysis. In etiolated shoots, RNA editing of transcripts of plant mitochondrial atp6, atp9, nad3, nad4, and rps12 genes was identical among fertile or cytoplasmic male sterile plants. We then established a protocol for mitochondrial RNA isolation from plant anthers and pollen to include in these studies. Whereas RNA editing of atp9, nad3, nad4, and rps12 transcripts in anthers was similar to etiolated shoots, mitochondrial atp6 RNA editing was strongly reduced in anthers of the A3Tx398 male sterile line of S. bicolor. atp6 transcripts of wheat and selected plastid transcripts in S. bicolor showed normal RNA editing, indicating that loss of atp6 RNA editing is specific for cytoplasmic male sterility S. bicolor mitochondria. Restoration of fertility in F1 and F2 lines correlated with an increase in RNA editing of atp6 transcripts. Our data suggest that loss of atp6 RNA editing contributes to or causes cytoplasmic male sterility in S. bicolor. Further analysis of the mechanism of cell type-specific loss of atp6 RNA editing activity may advance our understanding of the mechanism of RNA editing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geranyl diphosphate synthase, which catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to geranyl diphosphate, the key precursor of monoterpene biosynthesis, was purified from isolated oil glands of spearmint. Peptide fragments generated from the pure proteins of 28 and 37 kDa revealed amino acid sequences that matched two cDNA clones obtained by random screening of a peppermint-oil gland cDNA library. The deduced sequences of both proteins showed some similarity to existing prenyltransferases, and both contained a plastid-targeting sequence. Expression of each cDNA individually yielded no detectable prenyltransferase activity; however, coexpression of the two together produced functional geranyl diphosphate synthase. Antibodies raised against each protein were used to demonstrate that both subunits were required to produce catalytically active native and recombinant enzymes, thus confirming that geranyl diphosphate synthase is a heterodimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aryloxyphenoxypropionates, inhibitors of the plastid acetyl-CoA carboxylase (ACC) of grasses, also inhibit Toxoplasma gondii ACC. Clodinafop, the most effective of the herbicides tested, inhibits growth of T. gondii in human fibroblasts by 70% at 10 μM in 2 days and effectively eliminates the parasite in 2–4 days at 10–100 μM. Clodinafop is not toxic to the host cell even at much higher concentrations. Parasite growth inhibition by different herbicides is correlated with their ability to inhibit ACC enzyme activity, suggesting that ACC is a target for these agents. Fragments of genes encoding the biotin carboxylase domain of multidomain ACCs of T. gondii, Plasmodium falciparum, Plasmodium knowlesi, and Cryptosporidium parvum were sequenced. One T. gondii ACC (ACC1) amino acid sequence clusters with P. falciparum ACC, P. knowlesi ACC, and the putative Cyclotella cryptica chloroplast ACC. Another sequence (ACC2) clusters with that of C. parvum ACC, probably the cytosolic form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfate-assimilating organisms reduce inorganic sulfate for Cys biosynthesis. There are two leading hypotheses for the mechanism of sulfate reduction in higher plants. In one, adenosine 5′-phosphosulfate (APS) (5′-adenylylsulfate) sulfotransferase carries out reductive transfer of sulfate from APS to reduced glutathione. Alternatively, the mechanism may be similar to that in bacteria in which the enzyme, 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase, catalyzes thioredoxin (Trx)-dependent reduction of PAPS. Three classes of cDNA were cloned from Arabidopsis thaliana termed APR1, -2, and -3, that functionally complement a cysH, PAPS reductase mutant strain of Escherichia coli. The coding sequence of the APR clones is homologous with PAPS reductases from microorganisms. In addition, a carboxyl-terminal domain is homologous with members of the Trx superfamily. Further genetic analysis showed that the APR clones can functionally complement a mutant strain of E. coli lacking Trx, and an APS kinase, cysC. mutant. These results suggest that the APR enzyme may be a Trx-independent APS reductase. Cell extracts of E. coli expressing APR showed Trx-independent sulfonucleotide reductase activity with a preference for APS over PAPS as a substrate. APR-mediated APS reduction is dependent on dithiothreitol, has a pH optimum of 8.5, is stimulated by high ionic strength, and is sensitive to inactivation by 5′-adenosinemonophosphate (5′-AMP). 2′-AMP, or 3′-phosphoadenosine-5′-phosphate (PAP), a competitive inhibitor of PAPS reductase, do not affect activity. The APR enzymes may be localized in different cellular compartments as evidenced by the presence of an amino-terminal transit peptide for plastid localization in APR1 and APR3 but not APR2. Southern blot analysis confirmed that the APR clones are members of a small gene family, possibly consisting of three members.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequence analysis based on multiple isolates representing essentially all genera and species of the classic family Volvocaeae has clarified their phylogenetic relationships. Cloned internal transcribed spacer sequences (ITS-1 and ITS-2, flanking the 5.8S gene of the nuclear ribosomal gene cistrons) were aligned, guided by ITS transcript secondary structural features, and subjected to parsimony and neighbor joining distance analysis. Results confirm the notion of a single common ancestor, and Chlamydomonas reinharditii alone among all sequenced green unicells is most similar. Interbreeding isolates were nearest neighbors on the evolutionary tree in all cases. Some taxa, at whatever level, prove to be clades by sequence comparisons, but others provide striking exceptions. The morphological species Pandorina morum, known to be widespread and diverse in mating pairs, was found to encompass all of the isolates of the four species of Volvulina. Platydorina appears to have originated early and not to fall within the genus Eudorina, with which it can sometimes be confused by morphology. The four species of Pleodorina appear variously associated with Eudorina examples. Although the species of Volvox are each clades, the genus Volvox is not. The conclusions confirm and extend prior, more limited, studies on nuclear SSU and LSU rDNA genes and plastid-encoded rbcL and atpB. The phylogenetic tree suggests which classical taxonomic characters are most misleading and provides a framework for molecular studies of the cell cycle-related and other alterations that have engendered diversity in both vegetative and sexual colony patterns in this classical family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monolayer tapetum cells of the maturing flowers of Brassica napus contain abundant subcellular globuli-filled plastids and special lipid particles, both enriched with lipids that are supposed to be discharged and deposited onto the surface of adjacent maturing pollen. We separated the two organelles by flotation density gradient centrifugation and identified them by electron microscopy. The globuli-filled plastids had a morphology similar to those described in other plant species and tissues. They had an equilibrium density of 1.02 g/cm3 and contained neutral esters and unique polypeptides. The lipid particles contained patches of osmiophilic materials situated among densely packed vesicles and did not have an enclosing membrane. They exhibited osmotic properties, presumably exerted by the individual vesicles. They had an equilibrium density of 1.05 g/cm3 and possessed triacylglycerols and unique polypeptides. Several of these polypeptides were identified, by their N-terminal sequences or antibody cross-reactivity, as oleosins, proteins known to be associated with seed storage oil bodies. The morphological and biochemical characteristics of the lipid particles indicate that they are novel organelles in eukaryotes that have not been previously isolated and studied. After lysis of the tapetum cells at a late stage of floral development, only the major plastid neutral ester was recovered, whereas the other abundant lipids and proteins of the two tapetum organelles were present in fragmented forms or absent on the pollen surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genes for σ-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in σ70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green fluorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may influence transcription by regulating RNA polymerase activity in a green tissue-specific manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinct phosphodiesterasic activity (EC 3.1.4) was found in both mono- and dicotyledonous plants that catalyzes the hydrolytic breakdown of ADPglucose (ADPG) to produce equimolar amounts of glucose-1-phosphate and AMP. The enzyme responsible for this activity, referred to as ADPG pyrophosphatase (AGPPase), was purified over 1,100-fold from barley leaves and subjected to biochemical characterization. The calculated Keq′ (modified equilibrium constant) value for the ADPG hydrolytic reaction at pH 7.0 and 25°C is 110, and its standard-state free-energy change value (ΔG′) is −2.9 kcal/mol (1 kcal = 4.18 kJ). Kinetic analyses showed that, although AGPPase can hydrolyze several low-molecular weight phosphodiester bond-containing compounds, ADPG proved to be the best substrate (Km = 0.5 mM). Pi and phosphorylated compounds such as 3-phosphoglycerate, PPi, ATP, ADP, NADP+, and AMP are inhibitors of AGPPase. Subcellular localization studies revealed that AGPPase is localized exclusively in the plastidial compartment of cultured cells of sycamore (Acer pseudoplatanus L.), whereas it occurs both inside and outside the plastid in barley endosperm. In this paper, evidence is presented that shows that AGPPase, whose activity declines concomitantly with the accumulation of starch during development of sink organs, competes with starch synthase (ADPG:1,4-α-d-glucan 4-α-d-glucosyltransferase; EC 2.4.1.21) for ADPG, thus markedly blocking the starch biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The galactolipids, mono- and digalactosyldiacylglycerol (DGDG), are the most common nonphosphorous lipids in the biosphere and account for 80% of the membrane lipids found in green plant tissues. These lipids are major constituents of photosynthetic membranes (thylakoids), and a large body of evidence suggests that galactolipids are associated primarily with plastid membranes in seed plants. A null-mutant of Arabidopsis (dgd1), which lacks the DGDG synthase (DGD1) resulting in a 90% reduction in the amount of DGDG under normal growth conditions, accumulated DGDG after phosphate deprivation up to 60% of the amount present in the wild type. This observation suggests the existence of a DGD1-independent pathway of galactolipid biosynthesis. The fatty acid composition of the newly formed DGDG was distinct, showing an enrichment of 16-carbon fatty acids in the C-1 position of the glycerol backbone of DGDG. Roots with their rudimentary plastids accumulated large amounts of DGDG after phosphate deprivation, suggesting that this galactolipid may be located in extraplastidic membranes. Corroborating evidence for this hypothesis was obtained directly by fractionation of subcellular membranes from leaf tissue and indirectly by lipid analysis of the phosphate-deprived fad3 mutant primarily deficient in extraplastidic fatty acid desaturation. The discovery of extraplastidic DGDG biosynthesis induced by phosphate deprivation has revealed a biochemical mechanism for plants to conserve phosphate. Apparently, plants replace phospholipids with nonphosphorous galactolipids if environmental conditions such as phosphate deprivation require this for survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant phylogenetic estimates are most likely to be reliable when congruent evidence is obtained independently from the mitochondrial, plastid, and nuclear genomes with all methods of analysis. Here, results are presented from separate and combined genomic analyses of new and previously published data, including six and nine genes (8,911 bp and 12,010 bp, respectively) for different subsets of taxa that suggest Amborella + Nymphaeales (water lilies) are the first-branching angiosperm lineage. Before and after tree-independent noise reduction, most individual genomic compartments and methods of analysis estimated the Amborella + Nymphaeales basal topology with high support. Previous phylogenetic estimates placing Amborella alone as the first extant angiosperm branch may have been misled because of a series of specific problems with paralogy, suboptimal outgroups, long-branch taxa, and method dependence. Ancestral character state reconstructions differ between the two topologies and affect inferences about the features of early angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isopentenyl diphosphate (IPP) is the central intermediate in the biosynthesis of isoprenoids, the most ancient and diverse class of natural products. Two distinct routes of IPP biosynthesis occur in nature: the mevalonate pathway and the recently discovered deoxyxylulose 5-phosphate (DXP) pathway. The evolutionary history of the enzymes involved in both routes and the phylogenetic distribution of their genes across genomes suggest that the mevalonate pathway is germane to archaebacteria, that the DXP pathway is germane to eubacteria, and that eukaryotes have inherited their genes for IPP biosynthesis from prokaryotes. The occurrence of genes specific to the DXP pathway is restricted to plastid-bearing eukaryotes, indicating that these genes were acquired from the cyanobacterial ancestor of plastids. However, the individual phylogenies of these genes, with only one exception, do not provide evidence for a specific affinity between the plant genes and their cyanobacterial homologues. The results suggest that lateral gene transfer between eubacteria subsequent to the origin of plastids has played a major role in the evolution of this pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import system. A 75-kDa protein-conducting channel in the outer envelope of pea chloroplasts, Toc75, shares ≈22% amino acid identity to a similarly sized protein, designated SynToc75, encoded in the Synechocystis PCC6803 genome. Here we show that SynToc75 is located in the outer membrane (lipopolysaccharide layer) of Synechocystis PCC6803 and that SynToc75 forms a voltage-gated, high conductance channel with a high affinity for polyamines and peptides in reconstituted liposomes. These findings suggest that a component of the chloroplast protein import system, Toc75, was recruited from a preexisting channel-forming protein of the cyanobacterial outer membrane. Furthermore, the presence of a protein in the chloroplastic outer envelope homologous to a cyanobacterial protein provides support for the prokaryotic nature of this chloroplastic membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordination between the activities of organelles and the nucleus requires the exchange of signals. Using Chlamydomonas, we provide evidence that plastid-derived chlorophyll precursors may replace light in the induction of two nuclear heat-shock genes (HSP70A and HSP70B) and thus qualify as plastidic signal. Mutants defective in the synthesis of Mg-protoporphyrin IX were no longer inducible by light. Feeding of Mg-protoporphyrin IX or its dimethyl ester to wild-type or mutant cells in the dark resulted in induction. The analysis of HSP70A promoter mutants that do or do not respond to light revealed that these chlorophyll precursors specifically activate the light signaling pathway. Activation of gene expression was not observed when protoporphyrin IX, protochlorophyllide, or chlorophyllide were added. A specific interaction of defined chlorophyll precursors with factor(s) that regulate nuclear gene expression is suggested.