983 resultados para plasma light propagation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O objetivo deste estudo foi determinar o efeito da polimerização gradual, mediante a utilização de aparelhos de Quartzo-Tungustênio-Halógena (QTH) e Arco de Plasma de Xenônio (PAC), no selamento marginal de restaurações classe V em resina composta com margens localizadas em dentina. Setenta e cinco incisivos bovinos receberam preparos de cavidades classe V, na raiz, com o intuito de situar as margens cavitárias em dentina. Os dentes foram divididos em cinco grupos de acordo com o método de fotoativação. As cavidades, depois de condicionadas, foram tratadas com o sistema adesivo Single Bond (3M Dental) e restauradas com a resina composta Z100 (3M Dental) pela técnica incremental. A fotoativação foi realizada para cada grupo como descrito a seguir: Grupo I: PAC pelo método de fotoativação constante: 1600mW/cm2 – 3s; Grupo II: PAC pelo método de fotoativação por passos (800mW/cm2 – 2s, subindo automaticamente para 1600mW/cm2 – 4s); Grupo III: QTH pelo método de fotoativação constante: 400 mW/cm2 – 40s; Grupo IV: QTH pelo método de fotoativação em rampa: 100 a 600 mW/cm2 – 15s, permanecendo a 600mW/cm2 por mais 25s; Grupo V: QTH pelo método de fotoativação por pulso: 200 mW/cm2 – 3s, tempo de espera de 3min.e a seguir 600mW/cm2 – 30s. Os dentes foram armazenados em água destilada a 37ºC por 30 dias e então submetidos à ciclagem térmica, por 500 ciclos à 5 ºC e 55 ºC. Os ápices dos dentes foram selados com resina composta e os dentes foram cobertos com duas camadas de esmalte para unha, antes da sua imersão em fucsina básica a 0,5%. Os dentes foram seccionados e os cortes foram escaneados para avaliação da área infiltrada por corante por um programa de computador (Image Tools). Os cortes foram também visualizados com lupa para a determinação do grau de penetração do corante na interface dente-restauração por escores. Diferenças estatisticamente significantes foram observadas entre os grupos quanto ao grau e à área de penetração de corante (p < 0,05). Os grupos I e II apresentaram valores significantemente mais altos de infiltração e penetração do corante que os grupos III, IV e V. Em conclusão, o uso da fonte de PAC, no modo constante e por passos, resultou em valores significantemente maiores de infiltração marginal quando comparados com a intensidade de luz média emitida pelos aparelhos de QTH. Os métodos de fotoativação por pulso, rampa e continuo com a fonte de QTH resultaram num grau similar de microinfiltração.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated in vitro the shear bond strength of brackets bonded with xenon plasma arc light, light-emitting diode (LED) and conventional halogen light using different curing times. Brackets were bonded to the buccal surface of 60 human maxillary premolars allocated to five groups. In groups 1 and 2, the resin was cured with the plasma arc for three and six seconds (s), respectively; in groups 3 and 4, the LED was used for five and ten s, respectively; and in group 5, the halogen light was used for 40 s. The specimens were stored in water for 24 hours and subjected to a shear force until bracket failure. The debonding pattern was classified according to the adhesive remnant index (ARI). The results were assessed by Anova and the SNK post-hoc test. No differences were detected among groups 2, 4 and 5, which showed higher averages than groups 1 and 3, which were not different between themselves. The ARI scores showed no differences among the three types of light sources in all times tested. Plasma arc and LED lights can be used with shorter curing times, within certain limits, than conventional halogen light for bonding orthodontic brackets, without decreasing bond strength.
Resumo:
We compared the effects of medium light roast (MLR) and medium roast (MR) paper-filtered coffee on antioxidant capacity and lipid peroxidation in healthy volunteers. In a randomized crossover study, 20 volunteers consumed 482 +/- 61 ml/day of MLR or MR for four weeks. Plasma total antioxidant status (TAS), oxygen radical absorbance capacity (ORAC), oxidized LDL and 8-epi-prostaglandin F2 alpha, erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activity were measured at baseline and after the interventions. MLR had higher chlorogenic acids-(CGA; 334 mg/150 mL) and less caffeine (231 mg/150 ml) than MR had (210 and 244 mg/150 ml, respectively). MLR also had fewer Maillard reaction products (MRP) than MR had. Compared with baseline, subjects had an increase of 21 and 26 % in TAS, 13 and 13 % in CAT, 52 and 75 % in SOD, and 62 and 49 % in GPx after MLR and MR consumption (P < 0.001), respectively. ORAC increased after MLR (P = 0.004). No significant alteration in lipid peroxidation biomarkers was observed. Both coffees had antioxidant effects. Although MLR contained more CGA, there were similar antioxidant effects between the treatments. MRP may have contributed as an antioxidant. These effects may be important in protecting biological systems and reducing the risk of diseases related to oxidative stress.
Resumo:
We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.
Resumo:
The laser driven ion acceleration is a burgeoning field of resarch and is attracting a growing number of scientists since the first results reported in 2000 obtained irradiating thin solid foils by high power laser pulses. The growing interest is driven by the peculiar characteristics of the produced bunches, the compactness of the whole accelerating system and the very short accelerating length of this all-optical accelerators. A fervent theoretical and experimental work has been done since then. An important part of the theoretical study is done by means of numerical simulations and the most widely used technique exploits PIC codes (“Particle In Cell'”). In this thesis the PIC code AlaDyn, developed by our research group considering innovative algorithms, is described. My work has been devoted to the developement of the code and the investigation of the laser driven ion acceleration for different target configurations. Two target configurations for the proton acceleration are presented together with the results of the 2D and 3D numerical investigation. One target configuration consists of a solid foil with a low density layer attached on the irradiated side. The nearly critical plasma of the foam layer allows a very high energy absorption by the target and an increase of the proton energy up to a factor 3, when compared to the ``pure'' TNSA configuration. The differences of the regime with respect to the standard TNSA are described The case of nearly critical density targets has been investigated with 3D simulations. In this case the laser travels throughout the plasma and exits on the rear side. During the propagation, the laser drills a channel and induce a magnetic vortex that expanding on the rear side of the targer is source of a very intense electric field. The protons of the plasma are strongly accelerated up to energies of 100 MeV using a 200PW laser.
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
Phononic crystals, capable to block or direct the propagation of elastic/acoustic waves, have attracted increasing interdisciplinary interest across condensed matter physics and materials science. As of today, no generalized full description of elastic wave propagation in phononic structures is available, mainly due to the large number of variables determining the band diagram. Therefore, this thesis aims for a deeper understanding of the fundamental concepts governing wave propagation in mesoscopic structures by investigation of appropriate model systems. The phononic dispersion relation at hypersonic frequencies is directly investigated by the non-destructive technique of high-resolution spontaneous Brillouin light scattering (BLS) combined with computational methods. Due to the vector nature of the elastic wave propagation, we first studied the hypersonic band structure of hybrid superlattices. These 1D phononic crystals composed of alternating layers of hard and soft materials feature large Bragg gaps. BLS spectra are sensitive probes of the moduli, photo-elastic constants and structural parameters of the constituent components. Engineering of the band structure can be realized by introduction of defects. Here, cavity layers are employed to launch additional modes that modify the dispersion of the undisturbed superlattice, with extraordinary implications to the band gap region. Density of states calculations in conjunction with the associated deformation allow for unambiguous identication of surface and cavity modes, as well as their interaction with adjacent defects. Next, the role of local resonances in phononic systems is explored in 3D structures based on colloidal particles. In turbid media BLS records the particle vibration spectrum comprising resonant modes due to the spatial confinement of elastic energy. Here, the frequency and lineshapes of the particle eigenmodes are discussed as function of increased interaction and departure from spherical symmetry. The latter is realized by uniaxial stretching of polystyrene spheres, that can be aligned in an alternating electric field. The resulting spheroidal crystals clearly exhibit anisotropic phononic properties. Establishing reliable predictions of acoustic wave propagation, necessary to advance, e.g., optomechanics and phononic devices is the ultimate aim of this thesis.
Resumo:
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Resumo:
Echicetin, a heterodimeric snake C-type lectin from Echis carinatus, is known to bind specifically to platelet glycoprotein (GP)Ib. We now show that, in addition, it agglutinates platelets in plasma and induces platelet signal transduction. The agglutination is caused by binding to a specific protein in plasma. The protein was isolated from plasma and shown to cause platelet agglutination when added to washed platelets in the presence of echicetin. It was identified as immunoglobulin Mkappa (IgMkappa) by peptide sequencing and dot blotting with specific heavy and light chain anti-immunoglobulin reagents. Platelet agglutination by clustering echicetin with IgMkappa induced P-selectin expression and activation of GPIIb/IIIa as well as tyrosine phosphorylation of several signal transduction molecules, including p53/56(LYN), p64, p72(SYK), p70 to p90, and p120. However, neither ethylenediaminetetraacetic acid nor specific inhibition of GPIIb/IIIa affected platelet agglutination or activation by echicetin. Platelet agglutination and induction of signal transduction could also be produced by cross-linking biotinylated echicetin with avidin. These data indicate that clustering of GPIb alone is sufficient to activate platelets. In vivo, echicetin probably activates platelets rather than inhibits platelet activation, as previously proposed, accounting for the observed induction of thrombocytopenia.
Resumo:
We introduce a recursive bosonic quantization technique for generating classical PT photonic structures that possess hidden symmetries and higher order exceptional points. We study light transport in these geometries and we demonstrate that perfect state transfer is possible only for certain initial conditions. Moreover, we show that for the same propagation direction, left and right coherent transports are not symmetric with field amplitudes following two different trajectories. A general scheme for identifying the conservation laws in such PT-symmetric photonic networks is also presented.
Resumo:
The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.
Resumo:
An unusual case of localized amyloid light-chain (AL) amyloidosis and extramedullary plasmacytoma of the mitral valve is described. The worsening of a mitral regurgitation led to investigations and surgery. The valve presented marked distortion and thickening by type AL amyloid associated with a monotypic CD138+ immunoglobulin lambda plasma cell proliferation. Systemic staging showed a normal bone marrow and no evidence of amyloid deposition in other localizations. The patient's outcome after mitral valve replacement was excellent. To our knowledge, this is the first description of a localized AL amyloidosis as well as of a primary extramedullary plasmacytoma of the mitral valve.
Resumo:
HIV can enter the body through Langerhans cells, dendritic cells, and macrophages in skin mucosa, and spreads by lysis or by syncytia. Since UVL induces of HIV-LTR in transgenic mice mid in cell lines in vitro, we hypothesized that UVB may affect HIV in people and may affect HIV in T cells in relation to dose, apoptosis, and cytokine expression. To determine whether HIV is induced by UVL in humans, a clinical study of HIV+ patients with psoriasis or pruritus was conducted during six weeks of UVB phototherapy, Controls were HIV-psoriasis patients receiving UVB and HIV+ KS subjects without UVB.Blood and skin biopsy specimens were collected at baseline, weeks 2 and 6, and 4 weeks after UVL. AIDS-related skin diseases showed unique cytokine profiles in skin and serum at baseline. In patients and controls on phototherapy, we observed the following: (1) CD4+ and CD8+ T cell numbers are not significantly altered during phototherapy, (2) p24 antigen levels, and also HIV plasma levels increase in patients not on antiviral therapy, (3) HIV-RNA levels in serum or plasma. (viral load) can either increase or decrease depending on the patient's initial viral load, presence of antivirals, and skin type, (4) HIV-RNA levels in the periphery are inversely correlated to serum IL-10 and (5) HIV+ cell in skin increase after UVL at 2 weeks by RT-PCR in situ hybridization mid we negatively correlated with peripheral load. To understand the mechanisms of UVB mediated HIV transcription, we treated Jurkat T cell lines stably transfected with an HIV-LTR-luciferase plasmid only or additionally with tat-SV-40 early promoter with UVB (2 J/m2 to 200 J/m2), 50 to 200 ng/ml rhIL-10, and 10 μg/ml PHA as control. HIV promoter activity was measured by luciferase normalized to protein. Time points up to 72 hours were analyzed for HIV-LTR activation. HIV-LTR activation had the following properties: (1) requires the presence of Tat, (2) occurs at 24 hours, and (3) is UVB dose dependent. Changes in viability by MTS (3-(4,5-dimethyhhiazol-2-y1)-5-(3-carboxymethoxyphonyl)-2-(4-sulfophenyl)-2H-tetrazolium) mixed with PMS (phenazine methosulfate) solution and apoptosis by propidium iodide and annexin V using flow cytometry (FC) were seen in irradiated Jurkat cells. We determined that (1) rhIL-10 moderately decreased HIV-LTR activation if given before radiation and greatly decreases it when given after UVB, (2) HIV-LTR activation was low at doses of greater than 70 J/m2, compared to activation at 50 J/m2. (Abstract shortened by UMI.)^