953 resultados para plant pathogen interaction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insects associated with syconia of Ficus citrifolia in central Brazil. Fig trees present a diverse interaction with different groups of organisms. The inflorescence, or syconium, has characteristics that form a microenvironment in which interactions occur between fig trees and invertebrates. This study aimed to identify the insect fauna associated with the figs of Ficus citrifolia and to quantitatively describe the distribution pattern of the insects in the syconium, in an urban area in central Brazil. The syconia were used by 12 species of insects. Our results showed that the insects found on Ficus citrifolia presented a pattern of occurrence that depends on the composition of species found within each syconium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on conclusions drawn from general climatic impact assessment in mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift - area, physiography - changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1-2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10(-12)). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the 'intermediate phenotype' nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infections by opportunistic fungi have traditionally been viewed as the gross result of a pathogenic automatism, which makes a weakened host more vulnerable to microbial insults. However, fungal sensing of a host's immune environment might render this process more elaborate than previously appreciated. Here we show that interleukin (IL)-17A binds fungal cells, thus tackling both sides of the host-pathogen interaction in experimental settings of host colonization and/or chronic infection. Global transcriptional profiling reveals that IL-17A induces artificial nutrient starvation conditions in Candida albicans, resulting in a downregulation of the target of rapamycin signalling pathway and in an increase in autophagic responses and intracellular cAMP. The augmented adhesion and filamentous growth, also observed with Aspergillus fumigatus, eventually translates into enhanced biofilm formation and resistance to local antifungal defenses. This might exemplify a mechanism whereby fungi have evolved a means of sensing host immunity to ensure their own persistence in an immunologically dynamic environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Bumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change. Method: We sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient. Results: We found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides. Conclusions: Here, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé A Madagascar, comme dans plusieurs pays en développement, une grande partie de la population utilise les plantes pour se soigner. Plusieurs espèces des plantes sont ainsi utilisées en médecine traditionnelle malgache. Par ailleurs, la plupart de ces plantes ne font l'objet que de très peu d'étude scientifique. En effet, dans le cadre de l'investigation phytochimique de plantes utilisées en médecine traditionnelle malgache et dans la recherche des nouvelles substances biologiquement actives, Hypoestes serpens (Vahl) R. Br. (Acanthaceae) a été étudiée. Elle se présente sous deux variétés (glabre et poilue) qui sont tous utilisées dans la région sud-centre de Madagascar pour traiter la blennorragie. De l'extrait dichlorométhanique des feuilles de H. serpens (Vahl) R. Br. variété glabre, 12 diterpénoides dont 8 nouveaux ont été isolés. Ils ont tous montré une activité antifongique contre un champignon pathogène des plantes, Cladosporium cucumerinum, dans la bioautographie directe sur CCM. Quelques-uns ont également présenté une activité contre une levure saprophyte chez l'homme, Candida albicans et une activité inhibitrice de l'enzyme acétylcholinesterase. Les diterpènoïdes sont déjà considérés comme les principaux métabolites secondaires du genre Hypoestes. Le fractionnement de l'extrait méthanolique a conduit à l'isolement de 5 glycosides des flavonoïdes dont 4 sous formes C-g,lycosides qui n'ont jamais été identifiés dans la famille Acanthaceae. Ces flavonoïdes ont présenté une activité antiradicalaire contre le DPPH. Le fractionnement et la purification des extraits ont été effectués à l'aide des différentes techniques chromatographiques telles que la chromatographie sur colonne ouverte, la filtration sur gel, la chromatographie liquide à haute pression, la chromatographie liquide à moyenne pression et la chromatographie liquide à basse pression. Par ailleurs, les structures des composés isolés ont été élucidées par des techniques spectroscopiques (UV, MS, RMN) et de méthode chimique (hydrolyse acide). En plus de ces techniques, certaines méthodes physiques (cristallographie par rayons-X, mesure de rotation optique) ont été réalisées pour confirmer certaines structures. Comme l'espèce Hypoestes serpens (Vahl) R. Br. se présente en deux variétés, une étude comparative a été effectuée. Cette étude avait montré que ces deux variétés ont une activité biologique similaire. Finalement, une technique analytique couplée, HPLC-UV-APC1-MS a permis de montrer la présence de toutes les substances isolées de la variété glabre dans la variété poilue. Second résumé Depuis des milliers d'almées, l'homme utilise les plantes pour se soigner. De nos jours, même avec le développement de la médecine moderne, la phytothérapie reste toujours la forme des soins de santé abordable et accessible pour la majorité des populations rurales des pays en développement. En outre, les plantes médicinales constituent une source potentielle de molécules biologiquement actives pour les industries pharmaceutiques et actuellement, on estime que 25% des médicaments commercialisés dans le monde sont à base de plantes Dans le cadre de la recherche des nouvelles molécules à intérêt thérapeutique qui pourraient devenir un médicament ou un modèle de structure ("lead compound") pour le développement de nouveaux médicaments, nous avons fait une étude sur l'espèce, Hypoestes serpens (Vahl) R. Br, plante utilisée en médecine traditionnelle malgache. Cette espèce existe en deux variétés, une glabre et une autre poilue qui sont tous utilisées dans la région sud-centre de Madagascar pour traiter la blennorragie. Par ailleurs, les tradipraticiens utilisent de préférence la variété poilue. Dans la première partie de ce présent travail, une investigation phytochimique de H serpens, variété glabre (variété moins utilisée) a d'abord été effectuée afm d'isoler et d'identifier le maximum des molécules biologiquement actives qu'elle contient. De ce fait, 17 composés dont 8 nouveaux ont été isolés. Les potentiels d'activités thérapeutiques des substances isolées ont ensuite été dépistés sur les différents cibles suivants.: deux souches de champignons (Cladosporium cucumerinum et Candida albicans), l'enzyme acétylcholinesterase et le radical DPPH. La deuxième partie de ce travail a été consacrée sur l'étude comparative des deux variétés (glabre et poilue) de H. serpens à la fois sur le plan biologique et sur le plan phytochimique. A l'issue de cette comparaison, nous avons constaté que l'utilisation de ces deux variétés en médecine traditionnelle malgache n'est pas un hasard ; les deux variétés avaient présenté une activité biologique très remarquable et contiennent les mêmes substances actives. Ces résultats démontrent les potentiels thérapeutiques de H serpens en médecine traditionnelle malgache et pourraient également encourager les tradipraticiens à utiliser la variété glabre tout en protégeant la variété poilue qui est en voie de disparition actuellement. En bref, l'investigation phytochimique de H. serpens justifiée par l'isolement et l'identification de certains de ses principes actifs ouvre la voie aux recherches des médicaments d'origine naturelle. Abstract In Madagascar, as in many developing countries, most people use plants to cure. A large number of plant species are employed in Malagasy traditional medicine. Moreover, most of these plants have been subject only very little scientific study. As part of a phytochemical investigation of plants used in Malagasy traditional medicine and in the search for new biologically active substances, Hypoestes serpens (Vah1) R.Br. (Acanthaceae) was investigated. This species exists in two varieties (glabrous and hairy) which are used in the south-center part of Madagascar to treat gonorrhoea. From the dichloromethane extract of the leaves of H. serpens (Vah1) R. Br. glabrous variety, 12 diterpenoids 8 of which were new, were isolated. They showed antifungal activity against the plant pathogen Cladosporium cucumerinum, in the direct TLC bioautography. Some of them also had activity against the yeast Candida athicans and inhibited acetylcholinesterase. The diterpenes are considered as the principal secondary metabolites of the genus Hypoestes. Fractionation of the methanol extract led to the isolation of 5 flavonoid glycosides, 4 of which were C-glycosides, never before identified in the Acanthaceae family. These flavonoids showed radical scavenging activity against DPPH. The fractionation and the purification of the extracts were achieved by different chromatographic techniques such as open-column chromatography, gel filtration, high- pressure liquid chromatography, medium-pressure liquid chromatography and low-pressure liquid chromatography. Moreover, the structures of the isolated compounds were elucidated by spectroscopic techniques (UV, MS, NMR) and chemical technique (acid hydrolysis). In addition, some physical methods (X-ray crystallography, measurement of optical rotation) were performed to confirm some structures. As the species Hypoestes serpens (Vah1) R. Br. is present in two varieties, a comparative study was carried out. This study showed that these two varieties had similar biological activity. Finally, a coupled analytical technique HPLC-UV-APCI-MS showed the presence of the same compounds in both the glabrous and hairy varieties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world"s most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Cunnac et al., 2004b; Mukaihara et al., 2010; Occhialini et al., 2005; Salanoubat et al., 2002). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1994), which injects a number of effector proteins into plant cells causing disease in hosts or an hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the root-colonizing biocontrol strain CHA0 of Pseudomonas fluorescens, cell density-dependent synthesis of extracellular, plant-beneficial secondary metabolites and enzymes is positively regulated by the GacS/GacA two-component system. Mutational analysis of the GacS sensor kinase using improved single-copy vectors showed that inactivation of each of the three conserved phosphate acceptor sites caused an exoproduct null phenotype (GacS-), whereas deletion of the periplasmic loop domain had no significant effect on the expression of exoproduct genes. Strain CHA0 is known to synthesize a solvent-extractable extracellular signal that advances and enhances the expression of exoproduct genes during the transition from exponential to stationary growth phase when maximal exoproduct formation occurs. Mutational inactivation of either GacS or its cognate response regulator GacA abolished the strain's response to added signal. Deletion of the linker domain of the GacS sensor kinase caused signal-independent, strongly elevated expression of exoproduct genes at low cell densities. In contrast to the wild-type strain CHA0, the gacS linker mutant and a gacS null mutant were unable to protect tomato plants from crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici in a soil-less microcosm, indicating that, at least in this plant-pathogen system, there is no advantage in using a signal-independent biocontrol strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED: Pneumocystis species are fungal parasites of mammal lungs showing host specificity. Pneumocystis jirovecii colonizes humans and causes severe pneumonia in immunosuppressed individuals. In the absence of in vitro cultures, the life cycle of these fungi remains poorly known. Sexual reproduction probably occurs, but the system of this process and the mating type (MAT) genes involved are not characterized. In the present study, we used comparative genomics to investigate the issue in P. jirovecii and Pneumocystis carinii, the species infecting rats, as well as in their relative Taphrina deformans. We searched sex-related genes using 103 sequences from the relative Schizosaccharomyces pombe as queries. Genes homologous to several sex-related role categories were identified in all species investigated, further supporting sexuality in these organisms. Extensive in silico searches identified only three putative MAT genes in each species investigated (matMc, matMi, and matPi). In P. jirovecii, these genes clustered on the same contig, proving their contiguity in the genome. This organization seems compatible neither with heterothallism, because two different MAT loci on separate DNA molecules would have been detected, nor with secondary homothallism, because the latter involves generally more MAT genes. Consistently, we did not detect cis-acting sequences for mating type switching in secondary homothallism, and PCR revealed identical MAT genes in P. jirovecii isolates from six patients. A strong synteny of the genomic region surrounding the putative MAT genes exists between the two Pneumocystis species. Our results suggest the hypothesis that primary homothallism is the system of reproduction of Pneumocystis species and T. deformans. IMPORTANCE: Sexual reproduction among fungi can involve a single partner (homothallism) or two compatible partners (heterothallism). We investigated the issue in three pathogenic fungal relatives: Pneumocystis jirovecii, which causes severe pneumonia in immunocompromised humans; Pneumocystis carinii, which infects rats; and the plant pathogen Taphrina deformans. The nature, the number, and the organization within the genome of the genes involved in sexual reproduction were determined. The three species appeared to harbor a single genomic region gathering only three genes involved in sexual differentiation, an organization which is compatible with sexual reproduction involving a single partner. These findings illuminate the strategy adopted by fungal pathogens to infect their hosts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hypothesis that constitutive and inducible plant resistance against herbivores should trade-off because they use the same resources and impose costs to plant fitness has been postulated for a long time. Negative correlations between modes of deployment of resistance and defences have been observed across and within species in common garden experiments. It was therefore tested whether that pattern of resistance across genotypes follows a similar variation in patterns of gene expression and chemical defence production. Using the genetically tractable model Arabidopsis thaliana and different modes of induction, including the generalist herbivore Spodoptera littoralis, the specialist herbivore Pieris brassicae, and jasmonate application, constitutive and inducibility of resistance was measured across seven A. thaliana accessions that were previously selected based on constitutive levels of defence gene expression. According to theory, it was found that modes of resistance traded-off among accessions, particularly against S. littoralis, in which accessions investing in high constitutive resistance did not increase it substantially after attack and vice-versa. Accordingly, the average expression of eight genes involved in glucosinolate production negatively predicted larval growth across the seven accessions. Glucosinolate production and genes related to defence induction on healthy and herbivore-damaged plants were measured next. Surprisingly, only a partial correlation between glucosinolate production, gene expression, and the herbivore resistance results was found. These results suggest that the defence outcome of plants against herbivores goes beyond individual molecules or genes but stands on a complex network of interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model.