173 resultados para phosphoenolpyruvate carboxykinase gluconeogenesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genomic sequence of Clostridium chauvoei, the etiological agent of blackleg, a severe disease of ruminants with high mortality specified by a myonecrosis reveals a chromosome of 2.8 million base-pairs and a cryptic plasmid of 5.5 kilo base-pairs. The chromosome contains the main pathways like glycolysis/gluconeogenesis, sugar metabolism, purine and pyrimidine metabolisms, but the notable absence of genes of the citric acid cycle and deficient or partially deficient amino acid metabolism for Histidine, Tyrosine, Phenylalanine, and Tryptophan. These essential amino acids might be acquired from host tissue damage caused by various toxins and by protein metabolism that includes 57 genes for peptidases, and several ABC transporters for amino acids import.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim was to study the variation in metabolic responses in early-lactating dairy cows (n = 232) on-farm that were pre-selected for a high milk fat content (>45 g/l) and a high fat/protein ratio in milk (>1.5) in their previous lactation. Blood was assayed for concentrations of metabolites and hormones. Liver was measured for mRNA abundance of 25 candidate genes encoding enzymes and receptors involved in gluconeogenesis (6), fatty acid β-oxidation (6), fatty acid and triglyceride synthesis (5), cholesterol synthesis (4), ketogenesis (2) and the urea cycle (2). Two groups of cows were formed based on the plasma concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) (GRP+, high metabolic load; glucose <3.0 mm, NEFA >300 μm and BHBA >1.0 mm, n = 30; GRP-, low metabolic load; glucose >3.0 mm, NEFA <300 μm and BHBA <1.0 mm, n = 30). No differences were found between GRP+ and GRP- for the milk yield at 3 weeks post-partum, but milk fat content was higher (p < 0.01) for GRP+ than for GRP-. In week 8 post-partum, milk yield was higher in GRP+ in relation to GRP- (37.5 vs. 32.5 kg/d; p < 0.01). GRP+ in relation to GRP- had higher (p < 0.001) NEFA and BHBA and lower glucose, insulin, IGF-I, T3 , T4 concentrations (p < 0.01). The mRNA abundance of genes related to gluconeogenesis, fatty acid β-oxidation, fatty acid and triglyceride synthesis, cholesterol synthesis and the urea cycle was different in GRP+ compared to GRP- (p < 0.05), although gene transcripts related to ketogenesis were similar between GRP+ and GRP-. In conclusion, high metabolic load post-partum in dairy cows on-farm corresponds to differences in the liver in relation to dairy cows with low metabolic load, even though all cows were pre-selected for a high milk fat content and fat/protein ratio in milk in their previous lactation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperketonemia interferes with the metabolic regulation in dairy cows. It is assumed that metabolic and endocrine changes during hyperketonemia also affect metabolic adaptations during inflammatory processes. We therefore studied systemic and local intramammary effects of elevated plasma β-hydroxybutyrate (BHBA) before and during the response to an intramammary lipopolysaccharide (LPS) challenge. Thirteen dairy cows received intravenously either a Na-DL-β-OH-butyrate infusion (n = 5) to achieve a constant plasma BHBA concentration (1.7 ± 0.1 mmol/L), with adjustments of the infusion rates made based on immediate measurements of plasma BHBA every 15 min, or an infusion with a 0.9% NaCl solution (control; n = 8) for 56 h. Infusions started at 0900 h on d 1 and continued until 1700 h 2 d later. Two udder quarters were challenged with 200 μg of Escherichia coli LPS and 2 udder quarters were treated with 0.9% saline solution as control quarters at 48 h after the start of infusion. Blood samples were taken at 1 wk and 2h before the start of infusions as reference samples and hourly during the infusion. Mammary gland biopsies were taken 1 wk before, and 48 and 56 h (8h after LPS challenge) after the start of infusions. The mRNA abundance of key factors related to BHBA and fatty acid metabolism, and glucose transporters was determined in mammary tissue biopsies. Blood samples were analyzed for plasma glucose, BHBA, nonesterified fatty acid, urea, insulin, glucagon, and cortisol concentrations. Differences were not different for effects of BHBA infusion on the mRNA abundance of any of the measured target genes in the mammary gland before LPS challenge. Intramammary LPS challenge increased plasma glucose, cortisol, glucagon, and insulin concentrations in both groups but increases in plasma glucose and glucagon concentration were less pronounced in the Na-DL-β-OH-butyrate infusion group than in controls. In response to LPS challenge, plasma BHBA concentration decreased in controls and decreased also slightly in the BHBA-infused animals because the BHBA concentration could not be fully maintained despite a rapid increase in BHBA infusion rate. The change in mRNA abundance of citrate synthase in LPS quarters was significant between the 2 treatment groups. The results indicate that elevated circulating BHBA concentration inhibits gluconeogenesis before and during immune response to LPS challenge, likely because BHBA can replace glucose as an energy source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLACENTAL GLUCOSE TRANSPORTER (GLUT)-1 REGULATION IN PREECLAMPSIA Camilla Marini a,b, Benjamin P. Lüscher a,b, Marianne J€orger-Messerli a,b, Ruth Sager a,b, Xiao Huang c, Jürg Gertsch c, Matthias A. Hediger c, Christiane Albrecht c, Marc U. Baumann a,c, Daniel V. Surbek a,c a Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland, Switzerland; b Department of Clinical Research, University of Bern, Bern, Switzerland, Switzerland; c Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, Switzerland Objectives: Glucose is a primary energy source for the fetus. The absence of significant gluconeogenesis in the fetus means that the fetal up-take of this vital nutrient is dependent on maternal supply and subsequent transplacental transport. Altered expression and/or function of placental transporters may affect the intrauterine environment and could compromise fetal and mother well-being. We speculated that pre-eclampsia (PE) impairs the placental glucose transport system. Methods: Placentae were obtained after elective caesarean sections following normal pregnancies and pre-eclamptic pregnancies. Syncytial basal membrane (BM) and apical microvillus membrane (MVM) fractions were prepared using differential ultra-centrifugation and magnesium precipitation. Protein expression was assessed by western blot analysis. mRNA levels in whole villous tissue lysate were quantified by real-time PCR. To assess glucose transport activity a radiolabeled substrate up-take assay and a transepithelial transport model using primary cytotrophoblasts were established. Results: GLUT1 mRNA expression was not changed in PE when compared to control, whereas protein expression was significantly down-regulated. Glucose up-take into syncytial microvesicles was reduced in PE compared to control. In a transepithelial transport model, phloretinmediated inhibition of GLUT1 at the apical side of primary cytotrophoblasts showed a 44% of reduction of transepithelial glucose transport at IC50. Conclusions: GLUT1 is down-regulated on protein and functional level in PE compared to control. Altering glucose transport activity by inhibition of apical GLUT-1 indicates that transplacental glucose transport might be regulated on the apical side of the syncytiotrophoblast. These results might help to understand better the regulation of GLUT1 transporter and maybe in future to develop preventive strategies to modulate the fetal programming and thereby reduce the incidence of disease for both the mother and her child later in life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between C. albicans and innate immune cells is a key determinant to disease progression. Transcriptional profiling showed that C. albicans responds to macrophage phagocytosis by inducing pathways required for alternative carbon metabolism (beta-oxidation, the glyoxylate cycle, and gluconeogenesis), suggesting these pathways are important for virulence of C. albicans. ^ We have shown that deleting key genes (FOX2, FBP1) in these pathways results in virulence defects in an in vivo mouse model for systemic infection. Like icl1Δ/Δ mutants, fbp1Δ/Δ mutants are severely attenuated and fox2Δ/Δ mutants are mildly but significantly attenuated, indicating that carbon starvation is a relevant stress in vivo. ^ However, fox2Δ/Δ mutants also had unexpected phenotypes on certain carbon sources, unlike the case in Saccharomyces cerevisiae, suggesting these pathways are regulated differently in C. albicans. To test this, we identified the C. albicans regulators of these pathways based on those from S. cerevisiae and Aspergillus nidulans. ^ C. albicans has a partly conserved framework, but lacks two regulators (Oaf1p, Pip2p) controlling peroxisome biogenesis and beta-oxidation genes in yeast. Instead, C. albicans has a homolog, CTF1, of the A. nidulans fatty acid catabolism regulators FarA and FarB. We have shown that CTF1 is needed for growth on oleate (like FarA and FarB), expression of beta-oxidation and glyoxylate cycle genes, and full virulence. No function for CTF1 has previously been identified in C. albicans. Our data demonstrate a role for alternative carbon metabolism in the virulence of C. albicans and suggest that the regulation of these pathways is a mixture of the filamentous fungi and budding yeast systems. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordinated expression of virulence genes in Bacillus anthracis occurs via a multi-faceted signal transduction pathway that is dependent upon the AtxA protein. Intricate control of atxA gene transcription and AtxA protein function have become apparent from studies of AtxA-induced synthesis of the anthrax toxin proteins and the poly-D-glutamic acid capsule, two factors with important roles in B. anthracis pathogenesis. The amino-terminal region of the AtxA protein contains winged-helix (WH) and helix-turn-helix (HTH) motifs, structural features associated with DNA-binding. Using filter binding assays, I determined that AtxA interacted non-specifically at a low nanomolar affinity with a target promoter (Plef) and AtxA-independent promoters. AtxA also contains motifs associated with phosphoenolpyruvate: sugar phosphotransferase system (PTS) regulation. These PTS-regulated domains, PRD1 and PRD2, are within the central amino acid sequence. Specific histidines in the PRDs serve as sites of phosphorylation (H199 and H379). Phosphorylation of H199 increases AtxA activity; whereas, H379 phosphorylation decreases AtxA function. For my dissertation, I hypothesized that AtxA binds target promoters to activate transcription and that DNA-binding activity is regulated via structural changes within the PRDs and a carboxy-terminal EIIB-like motif that are induced by phosphorylation and ligand binding. I determined that AtxA has one large protease-inaccessible domain containing the PRDs and the carboxy-terminal end of the protein. These results suggest that AtxA has a domain that is distinct from the putative DNA-binding region of the protein. My data indicate that AtxA activity is associated with AtxA multimerization. Oligomeric AtxA was detected when co-affinity purification, non-denaturing gel electrophoresis, and bis(maleimido)hexane (BMH) cross-linking techniques were employed. I exploited the specificity of BMH for cysteine residues to show that AtxA was cross-linked at C402, implicating the carboxy-terminal EIIB-like region in protein-protein interactions. In addition, higher amounts of the cross-linked dimeric form of AtxA were observed when cells were cultured in conditions that promote toxin gene expression. Based on the results, I propose that AtxA multimerization requires the EIIB-like motif and multimerization of AtxA positively impacts function. I investigated the role of the PTS in the function of AtxA and the impact of phosphomimetic residues on AtxA multimerization. B. anthracis Enzyme I (EI) and HPr did not facilitate phosphorylation of AtxA in vitro. Moreover, markerless deletion of ptsHI in B. anthracis did not perturb AtxA function. Taken together, these results suggest that proteins other than the PTS phosphorylate AtxA. Point mutations mimicking phosphohistidine (H to D) and non-phosphorylated histidine (H to A) were tested for an impact on AtxA activity and multimerization. AtxA H199D, AtxA H199A, and AtxA H379A displayed multimerization phenotypes similar to that of the native protein, whereas AtxA H379D was not susceptible to BMH cross-linking or co-affinity purification with AtxA-His. These data suggest that phosphorylation of H379 may decrease AtxA activity by preventing AtxA multimerization. Overall, my data support the following model of AtxA function. AtxA binds to target gene promoters in an oligomeric state. AtxA activity is increased in response to the host-related signal bicarbonate/CO2 because this signal enhances AtxA multimerization. In contrast, AtxA activity is decreased by phosphorylation at H379 because multimerization is inhibited. Future studies will address the interplay between bicarbonate/CO2 signaling and phosphorylation on AtxA function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is the most important fungal pathogen of humans. Transcript profiling studies show that upon phagocytosis by macrophages, C. albicans undergoes a massive metabolic reorganization activating genes involved in alternative carbon metabolism, including the glyoxylate cycle, β-oxidation and gluconeogenesis. Mutations in key enzymes such as ICL1 (glyoxylate cycle) and FOX2 (fatty acid β-oxidation) revealed that alternative carbon metabolic pathways are required for full virulence in C. albicans. These studies indicate C. albicans uses non-preferred carbon sources allowing its adaptation to microenvironments were nutrients are scarce. It has become apparent that the regulatory networks required for regulation of alternative carbon metabolism in C. albicans are considerably different from the Saccharomyces cerevisiae paradigm and appear more analogous to the Aspergillus nidulans systems. Well-characterized transcription factors in S. cerevisiae have no apparent phenotype or are missing in C. albicans. CTF1 was found to be a single functional homolog of the A. nidulans FarA/FarB proteins, which are transcription factors required for fatty acid utilization. Both FOX2 and ICL1 were found to be part of a large CTF1 regulon. To increase our understanding of how CTF1 regulates its target genes, including whether regulation is direct or indirect, the FOX2 and ICL1 promoter regions were analyzed using a combination of bioinformatics and promoter deletion analysis. To begin characterizing the FOX2 and ICL1 promoters, 5’ rapid amplification of cDNA ends (5’RACE) was used to identify two transcriptional initiation sites in FOX2 and one in ICL1. GFP reporter assays show FOX2 and ICL1 are rapidly expressed in the presence of alternative carbon sources. Both FOX2 and ICL1 harbor the CCTCGG sequence known to be bound by the Far proteins, hence rendering the motif as a putative CTF1 DNA binding element. In this study, the CCTCGG sequence was found to be essential for FOX2 regulation. However, this motif does not appear to be equally important for the regulation of ICL1. This study supports the notion that although C. albicans has diverged from the paradigms of model fungi, C. albicans has made specific adaptations to its transcription-based regulatory network that may contribute to its metabolic flexibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: Comunicar un caso de cetoacidosis inducida por corticoides y gatifloxacina y discutir los mecanismos de esta inusual y seria complicación. Caso clínico: Mujer de 32 años, ingresa por neumonía adquirida en la comunidad de 5 días de evolución. Antecedentes: AR probable diagnosticada 4 meses antes tratada con metotrexate y corticoides intermitente. Examen físico: regular estado general, IMC 21, Tº 38ºC, FR 32/min, derrame pleural derecho, FC 96/min, PA 110/70, artralgias sin artritis. Exámenes complementarios: Hto 23%, GB 16300/mm3, VSG 96mm/1ºh, glucemia 0.90mg/dl, función hepática y amilasa normales, uremia 1.19g/l, creatinina 19mg/l. Hemocultivos (2) y esputo positivos para Neumococo penicilina-sensible. La neumonía responde a gatifloxacina. Deteriora la función renal hasta la anuria con acidosis metabólica. Se interpreta como glomerulonefritis lúpica rápidamente progresiva por proteinuria de 2g/24hs, FR (+) 1/1280, FAN (+) 1/320 homogéneo, Anti ADN (+) , complemento bajo: C3 29.4mg/dl y C4 10mg/dl, Ac anti Ro, La, Scl70, RNP y anticardiolipinas positivos. Se indica metilprednisolona EV (3 bolos 1g), complicándose con hiperglucemias de >6 g/l y cetoacidosis con cetonuria (+); Ac anti ICA y antiGAD negativos con HbA1C 5.2%. Es tratada en UTI (insulina y hemodiálisis). La paciente mejora, se desciende la dosis de corticoides, con normalización de la glucemia sin tratamiento hipoglucemiante. Comentarios 1) La presencia de HbA1C nomal, Ac anti ICA y GAD negativos permite descartar con razonable grado de certeza una diabetes tipo1 asociada al lupus. 2) El desarrollo de la cetoacidosis durante el tratamiento con corticoides y gatifloxacina y su resolución posterior avalan el rol etiológico de los mismos. 3) La cetoacidosis puede explicarse por estimulación de la gluconeogénesis y la insulinoresistencia a nivel de receptor y post-receptor generada por los fármacos potenciado por el estado inflamatorio relacionado con el lupus y la sepsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La cetoacidosis normoglucémica se define como un cuadro de cetoacidosis diabética, con niveles de bicarbonato menores a 10 mEq/l, cetonemia o cetonuria y niveles de glucosa inferiores a 200 mg/dl. Representa hasta el 30% de las formas de presentación de cetoacidosis diabética. Se comunica un caso de cetoacidosis normoglucémica en una embarazada con el objeto de destacar esta inusual asociación y forma de presentación y realizar comentarios respecto a su fisiopatología y tratamiento. Los factores que predisponen a esta condición son los vómitos excesivos, la persistencia del uso de la insulina, una inadecuada ingesta de carbohidratos y el embarazo en algunos casos. El déficit relativo de insulina, la glucogenólisis acelerada con depleción de los depósitos hepáticos de glucosa y la acción del glucagón y hormonas contrainsulares sobre la gluconeogénesis y la lipólisis, son los principales mecanismos responsables del desarrollo de la cetoacidosis euglucémica. El manejo de esta condición es diferente por la necesidad de aporte de volumen con dextrosa al 5-10% en agua y elevado requerimiento de insulina para corregir la cetogénesis y la acidosis. Es importante conocer que aún con glucemias normales puede existir cetoacidosis en pacientes con las condiciones predisponentes mencionadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of β-xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of β-xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotaxis of Escherichia coli toward phosphotransferase systems (PTSs)–carbohydrates requires phosphoenolpyruvate-dependent PTSs as well as the chemotaxis response regulator CheY and its kinase, CheA. Responses initiated by flash photorelease of a PTS substrates d-glucose and its nonmetabolizable analog methyl α-d-glucopyranoside were measured with 33-ms time resolution using computer-assisted motion analysis. This, together with chemotactic mutants, has allowed us to map out and characterize the PTS chemotactic signal pathway. The responses were absent in mutants lacking the general PTS enzymes EI or HPr, elevated in PTS transport mutants, retarded in mutants lacking CheZ, a catalyst of CheY autodephosphorylation, and severely reduced in mutants with impaired methyl-accepting chemotaxis protein (MCP) signaling activity. Response kinetics were comparable to those triggered by MCP attractant ligands over most of the response range, the most rapid being 11.7 ± 3.1 s−1. The response threshold was <10 nM for glucose. Responses to methyl α-d-glucopyranoside had a higher threshold, commensurate with a lower PTS affinity, but were otherwise kinetically indistinguishable. These facts provide evidence for a single pathway in which the PTS chemotactic signal is relayed rapidly to MCP–CheW–CheA signaling complexes that effect subsequent amplification and slower CheY dephosphorylation. The high sensitivity indicates that this signal is generated by transport-induced dephosphorylation of the PTS rather than phosphoenolpyruvate consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transmembrane subunit of the Glc transporter (IICBGlc), which mediates uptake and concomitant phosphorylation of glucose, spans the membrane eight times. Variants of IICBGlc with the native N and C termini joined and new N and C termini in the periplasmic and cytoplasmic surface loops were expressed in Escherichia coli. In vivo transport/in vitro phosphotransferase activities of the circularly permuted variants with the termini in the periplasmic loops 1 to 4 were 35/58, 32/37, 0/3, and 0/0% of wild type, respectively. The activities of the variants with the termini in the cytoplasmic loops 1 to 3 were 0/25, 0/4 and 24/70, respectively. Fusion of alkaline phosphatase to the periplasmic C termini stabilized membrane integration and increased uptake and/or phosphorylation activities. These results suggest that internal signal anchor and stop transfer sequences can function as N-terminal signal sequences in a circularly permuted α-helical bundle protein and that the orientation of transmembrane segments is determined by the amino acid sequence and not by the sequential appearance during translation. Of the four IICBGlc variants with new termini in periplasmic loops, only the one with the discontinuity in loop 4 is inactive. The sequences of loop 4 and of the adjacent TM7 and TM8 are conserved in all phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system transporters of the glucose family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different total enzyme concentrations on the flux through the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in vitro was determined by measuring PTS-mediated carbohydrate phosphorylation at different dilutions of cell-free extract of Escherichia coli. The dependence of the flux on the protein concentration was more than linear but less than quadratic. The combined flux–response coefficient of the four enzymes constituting the glucose PTS decreased slightly from values of ≈1.8 with increasing protein concentrations in the assay. Addition of the macromolecular crowding agents polyethylene glycol (PEG) 6000 and PEG 35000 led to a sharper decrease in the combined flux–response coefficient, in one case to values of ≈1. PEG 6000 stimulated the PTS flux at lower protein concentrations and inhibited the flux at higher protein concentrations, with the transition depending on the PEG 6000 concentration. This suggests that macromolecular crowding decreases the dissociation rate constants of enzyme complexes. High concentrations of the microsolute glycerol did not affect the combined flux–response coefficient. The data could be explained with a kinetic model of macromolecular crowding in a two-enzyme group-transfer pathway. Our results suggest that, because of the crowded environment in the cell, the different PTS enzymes form complexes that live long on the time-scale of their turnover. The implications for the metabolic behavior and control properties of the PTS, and for the effect of macromolecular crowding on nonequilibrium processes, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugar transport by some permeases in Escherichia coli is allosterically regulated by the phosphorylation state of the intracellular regulatory protein, enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system. A sensitive radiochemical assay for the interaction of enzyme IIAglc with membrane-associated lactose permease was used to characterize the binding reaction. The binding is stimulated by transportable substrates such as lactose, melibiose, and raffinose, but not by sugars that are not transported (maltose and sucrose). Treatment of lactose permease with N-ethylmaleimide, which blocks ligand binding and transport by alkylating Cys-148, also blocks enzyme IIAglc binding. Preincubation with the substrate analog β-d-galactopyranosyl 1-thio-β-d-galactopyranoside protects both lactose transport and enzyme IIAglc binding against inhibition by N-ethylmaleimide. A collection of lactose permease replacement mutants at Cys-148 showed, with the exception of C148V, a good correlation of relative transport activity and enzyme IIAglc binding. The nature of the interaction of enzyme IIAglc with the cytoplasmic face of lactose permease was explored. The N- and C-termini, as well as five hydrophilic loops in the permease, are exposed on the cytoplasmic surface of the membrane and it has been proposed that the central cytoplasmic loop of lactose permease is the major determinant for interaction with enzyme IIAglc. Lactose permease mutants with polyhistidine insertions in cytoplasmic loops IV/V and VI/VII and periplasmic loop VII/VIII retain transport activity and therefore substrate binding, but do not bind enzyme IIAglc, indicating that these regions of lactose permease may be involved in recognition of enzyme IIAglc. Taken together, these results suggest that interaction of lactose permease with substrate promotes a conformational change that brings several cytoplasmic loops into an arrangement optimal for interaction with the regulatory protein, enzyme IIAglc. A topological map of the proposed interaction is presented.