967 resultados para phosphate fertilizers
Resumo:
Phosphohedyphane Ca2Pb3(PO4)3Cl is rare Ca and Pb phosphate mineral that belongs to the apatite supergroup. We have analysed phosphohedyphane using SEM with EDX, and Raman and infrared spectroscopy. The chemical analysis shows the presence of Pb, Ca, P and Cl and the chemical formula is expressed as Ca2Pb3(PO4)3Cl. The very sharp Raman band at 975 cm−1 is assigned to the PO43-ν1 symmetric stretching mode. Raman bands noted at 1073, 1188 and 1226 cm−1 are to the attributed to the PO43-ν3 antisymmetric stretching modes. The two Raman bands at 835 and 812 cm−1 assigned to the AsO43-ν1 symmetric stretching vibration and AsO43-ν3 antisymmetric stretching modes prove the substitution of As for P in the structure of phosphohedyphane. A series of bands at 557, 577 and 595 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 units. The multiplicity of bands in the ν2, ν3 and ν4 spectral regions provides evidence for the loss of symmetry of the phosphate anion in the phosphohedyphane structure. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra. Some Raman bands attributable to OH stretching bands were observed, indicating the presence of water and/or OH units in the structure.
Resumo:
Sidorenkite is a very rare low-temperature hydrothermal mineral, formed very late in the crystallization of hyperagpaitic pegmatites in a differentiated alkalic massif (Mt. Alluaiv, Kola Peninsula, Russia). Sidorenkite Na3Mn(PO4)(CO3) is a phosphate–carbonate of sodium and manganese. Such a formula with two oxyanions lends itself to vibrational spectroscopy. The sharp Raman band at 959 cm−1 and 1012 cm−1 are assigned to the PO43− stretching modes, whilst the Raman bands at 1044 cm−1 and 1074 cm−1 are attributed to the CO32− stretching modes. It is noted that no Raman bands at around 800 cm−1 for sidorenkite were observed. The infrared spectrum of sidorenkite shows a quite intense band at 868 cm−1 with other resolved component bands at 850 and 862 cm−1. These bands are ascribed to the CO32− out-of-plane bend (ν2) bending mode. The series of Raman bands at 622, 635, 645 and 704 cm−1 are assigned to the ν4 phosphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the carbonate anion from D3h or even C2v.
Resumo:
The objective of this review is to identify the effectiveness of education or behavioral interventions on adherence to phosphate control in adults with end stage kidney disease (ESKD) receiving hemodialysis (HD).
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.
Resumo:
Graphene oxide (GO) has attracted much interest for applications in bone tissue engineering; however, until now the interaction between GO and stem cells, and the in vivo bone-forming ability of GO has not been explored. The aim of this study was to produce a GO-modified β-tricalcium phosphate (β-TCP-GRA) biceramics and then explore the material’s osteogenic capacity in vitro and in vivo, as well as unravel some of the molecular mechanisms behind this. β-TCP-GRA disks and scaffolds were successfully prepared by a simple GO/water suspension soaking method in combination with heat treatment. These scaffolds were found to significantly enhance the proliferation, alkaline phosphatase activity and osteogenic gene expression of human bone marrow stromal cells (hBMSCs), when compared to β-TCP without GO modification (controls). Activation of the Wnt/β-catenin signaling pathway in hBMSCs appears to be the mechanism behind this osteogenic induction by β-TCP-GRA. β-TCP-GRA scaffolds led to an increased rate of in vivo new bone formation compared to β-TCP controls, indicative of the stimulatory effect of GO on in vivo osteogenesis, making GO modification of β-TCP a very promising method for applications in bone tissue engineering, in particular for the regeneration of large bone defects.
Resumo:
We have studied the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O using a combination of SEM with EDX and Raman and infrared spectroscopy. Qualitative chemical analysis shows Al, Fe and P. Raman bands at 1013 and 1027cm−1 are assigned to the PO43−ν1 symmetric stretching mode. The observation of two bands suggests the non-equivalence of the phosphate units in the vantasselite structure. Raman bands at 1051, 1076 and 1090cm−1 are attributed to the PO43−ν3 antisymmetric stretching vibration. A comparison is made with the spectroscopy of wardite. Strong infrared bands at 1044, 1078, 1092, 1112, 1133, 1180 and 1210cm−1 are attributed to the PO43−ν3 antisymmetric stretching mode. Some of these bands may be due to δAl2OH deformation modes. Vibrational spectroscopy offers a mechanism for the study of the molecular structure of vantasselite.
Resumo:
Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.
Resumo:
Study Design This was a randomised controlled trial in patients with degenerative disc disease (DDD) who underwent instrumented posterolateral lumbar fusion (PLF) surgery. Objective The aim of this study was to assess the efficacy of the bone grafting substitute, silicate-substituted calcium phosphate (SiCaP) compared with bone morphogenetic protein (rhBMP-2) and to evaluate clinical outcomes over a period of two years. Methods Patients undergoing PLF surgery for DDD at a single centre were recruited and randomised to one of two groups; SiCaP (n=9) or rhBMP-2 (n=10). One patient withdrew prior to randomisation and another from the rhBMP-2 group after randomisation. The radiological and clinical outcomes were examined and compared. Fusion was assessed at 12 months with computed tomography (CT) and plain radiographs. Clinical outcomes were evaluated by recording measures of pain, quality of life, disability and neurological status from six weeks to two years postoperatively. Results In the SiCaP and rhBMP-2 groups, fusion was observed in 9/9 and 8/9 patients respectively. Pain and disability scores were reduced and quality of life increased in both groups. Leg pain, disability and satisfaction scores were similar between the groups at each postoperative time point, however, back pain was less at six weeks and quality of life was higher at six months in the SiCaP group than the rhBMP-2 group. Conclusions SiCaP and rhBMP-2 were comparable in terms of achieving successful bone growth and fusion. Both groups similarly alleviated pain and improved quality of life, neurological, satisfaction and return to work outcomes following PLF surgery.
Resumo:
Depolymerization of purified organosolv eucalyptus wood lignin by the heterogeneous catalysts, cobalt polyphosphate (CoP2O6) and calcium phosphate (β-CaP2O6) was investigated. A total syringol yield of 16.7% was achieved with β-CaP2O6 in a methanol/water (50/50, wt/wt) solvent system after depolymerization at 300 ºC for 1 h, showing selectivity of the catalyst.
Resumo:
Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)
Resumo:
Phosphorus has a number of indispensable biochemical roles, but its natural deposition and the low solubility of phosphates as well as their rapid transformation to insoluble forms make the element commonly the growth-limiting nutrient, particularly in aquatic ecosystems. Famously, phosphorus that reaches water bodies is commonly the main cause of eutrophication. This undesirable process can severely affect many aquatic biotas in the world. More management practices are proposed but long-term monitoring of phosphorus level is necessary to ensure that the eutrophication won't occur. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing flow proportional load as well as representative average of concentrations of phosphorus in the environment. Although some types of passive samplers are commercially available, their uses are still scarcely reported in the literature. In Japan, there is limited application of passive sampling technique to monitor phosphorus even in the field of agricultural environment. This paper aims to introduce the relatively new P-sampling techniques and their potential to use in environmental monitoring studies.
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.