612 resultados para pectinolytic yeasts
Resumo:
目的:三价铬作为葡萄糖耐量因子的有效活性成分,具有改善糖尿病人的糖代谢和脂代谢的作用,因此补充三价铬是糖尿病治疗中的有效的营养措施,富铬酵母是目前向人体提供三价铬的有效途径,并且葡萄糖耐量因子可以提高靶组织对胰岛素的敏感性而不促进胰腺的胰岛素分泌,为治疗糖尿病提供了一种新方法。 方法:(1)取昆明种小鼠,分对照与实验组,适应性喂养后实验组小鼠按40mg/kg体重注射STZ,对照组注射相应体积柠檬酸缓冲液,连续注射5天,3天后测血糖值,取血糖值≥11.1mmol/L为成功模型。成模小鼠分为两组,一组灌胃富铬酵母悬液4周,另一组灌胃蒸馏水4周,测血糖值。(2)取昆明种小鼠,分对照与实验组,适应性喂养后实验组小鼠按200mg/kg体重注射STZ,对照组注射相应体积柠檬酸缓冲液,3d后测血糖,取血糖值≥11.1mmol/L为成功模型。成模小鼠分为两组,一组灌胃富铬酵母悬液4周,另一组灌胃蒸馏水4周,测血糖值。(3)取C57BL/6J断乳小鼠,随机分为正常饲料组和高脂饲料组,分别用相应饲料喂养3 周。高脂饲料组又分为高脂饲料对照组和高脂饲料实验组。第3 周末, 高脂饲料实验组腹腔内按100mg/kg体重一次性腹腔注射STZ;正常饲料组和高脂饲料对照组腹腔注射相应体积的无菌柠檬酸缓冲液。继续喂养4 周。小鼠以第7周末血糖为准,≥11.1mmol/L为成功模型。成模小鼠分为2组,1组每日灌胃富铬酵母悬液,另一组灌服相应体积的去离子水,4周后,测血糖值。 结果:对Ⅰ型糖尿病小鼠,富铬酵母治疗2周后,治疗组血糖明显低于对照组血糖(p<0.05),4周后显著低于(p<0.01);对Ⅱ型糖尿病小鼠,富铬酵母治疗2周后,治疗组血糖明显低于对照组血糖(p<0.05),3周后显著低于(p<0.01);对肥胖引起的Ⅱ型糖尿病小鼠,富铬酵母治疗2周后,治疗组血糖显 著低于对照组血糖(p<0.01),且血清胰岛素浓度之间没有明显差异。 结论:富铬酵母具有明显的降血糖作用,且不刺激胰岛素分泌
Resumo:
Nitrogen is the most abundant element in atmosphere and fundamental component of proteins, nucleic acids and other essential molecules. In the past century the industrial use of nitrogen compounds has grown exponentially causing widespread pollution. Nitrogen pollution has wide-ranging impacts including contributions to global warming, acid rains and eutrophication. Reduction of nitrogen use in industry and agriculture coupled whit remediation treatments could represent a solution. To this purpose we isolated from environmental samples a nitrophile strain capable of removing nitrogen compounds efficiently from the medium. Through the molecular characterization, we identified the strain as a Rhodotorula glutinis that we called DSBCA06. We examined the main metabolic features of the strain, also to determine the best growing conditions. At the same time, the ability of the strain to grow in presence of high nitrite concentrations was assayed, being a relevant feature poorly studied earlierfor other environmental yeasts. The ability of the strain to grow in presence of heavy metal cations was also tested, showing a noticeable tolerance. The cost of bioremediation treatments is often a problem. One of the way to obviate this is to produce valuable secondary metabolites, capable of positively impact the cost of the processes. In this context the ability of the strain to produce carotenoids, natural molecules with antioxidant properties used for food production, cosmetic and pharmaceutical industry, has been evaluated. The strain Rhodotorula glutinis DSBCA06 showed interesting features suggesting its possible use in bioremediation or industrials process for production of secondary metabolites such as lipids and carotenoids.
Resumo:
A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.
Resumo:
BACKGROUND: The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. RESULTS: Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. CONCLUSIONS: The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.
Resumo:
The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.
Resumo:
This study compares conventional and molecular techniques for the detection of fungi in 77 adult cystic fibrosis (CF) patients. Three different methods were investigated, i.e., (1) conventional microbiological culture (including yeasts and filamentous fungi), (2) mycological culture with CF-derived fungal specific culture media, and (3) Non-culture and direct DNA extraction from patient sputa. Fungi isolated from environmental air samples of the CF unit were compared to fungi in sputa from CF patients. Fungi (n = 107) were detected in 14/77(18%) of patients by method 1, in 60/77 (78%) of patients by method 2 and with method 3, in 77/77(100%) of the patients. The majority of yeasts isolated were Candida albicans and C. dubliniensis. Exophiala (Wangiella) dermatitidis, Scedosporiumapiospermum, Penicillium spp., Aspergillus fumigatus, and Aspergillus versicolor were also identified by sequence analysis of the rDNA short internal transcribed spacer (ITS2) region. Conventional laboratory analysis failed to detect fungi in 63 patients mainly due to overgrowth by Gram-negative organisms. Mycological culture with antibiotics dramatically increased the number of fungi that could be detected. Molecular techniques detected fungi such as Saccharomyces cerevisiae, Malassezia spp., Fuscoporia ferrea, Fusarium culmorum, Acremonium strictum, Thanatephorus cucumeris and Cladosporium spp. which were not found with other methods. This study demonstrates that several potentially important fungi may not be detected if mycological culture methods alone are used. A polyphasic approach employing both enhanced mycological culture with molecular detection will help determine the presence of fungi in the sputa of patients with CF and their healthcare environment.
Resumo:
Cystic fibrosis (CF) patients may suffer increased morbidity and mortality through colonisation, allergy and invasive infection from fungi. The black yeast, Exophiala dermatitidis (synonym Wangiella dermatitidis) has been found with increasing frequency in sputum specimens of CF patients, with reported isolation rates ranging from 1.1 to 15.7%. At present, no diagnostic PCR exists to aid with the clinical laboratory detection and identification of this organism. A novel species-specific PCR-based assay was developed for the detection of E. dermatitidis, based on employment of rDNA operons and interspacer (ITS) regions between these rDNA operons. Two novel primers, (designated ExdF & ExdR) were designed in silico with the aid of computer-aided alignment software and with the alignment of multiple species of Exophiala, as well as with other commonly described yeasts and filamentous fungi within CF sputum, including Candida. Aspergillus and Scedosporium. An amplicon of approximately 455 by was generated, spanning the partial ITS I region - the complete 5.8S rDNA region - partial ITS2 region, employing ExdF (forward primer [16-mer], 5'-CCG CCT ATT CAG GTC C-3' and ExdR (reverse primer [16-mer], 5'-TCT CTC CCA CTC CCG C-3', was employed and optimised on extracted genomic DNA from a well characterised culture of E. dermatitidis, as well as with high quality genomic DNA template from a further 16 unrelated fungi, including Candida albicans, C. dubliniensis, C. parapsilosis, C. glabrata, Scedosporium apiospermum, Penicillium sp., Aspergillus fumigatus, Aspergillus versicolor, Pichia guilliermondii, Rhodotorula sp., Trichosporon sp., Aureobasidium pullulans, Fusarium sp., Mucor hiemalis, Bionectria ochroleuca, Gibberella pulicaris. Results demonstrated that only DNA from E. dermatitidis gave an amplification product of the expected sire, whilst none of the other fungi were amplifiable. Subsequent employment of this primer pair detected this yeast from mycological cultures from 2/50 (4%) adult CF patients. These two patients were the only patients who were previously shown to have a cultural history of E. dermatitidis from their sputum. E. dermatitidis is a slow-growing fungus, which usually takes up to two weeks to culture in the microbiology laboratory and therefore is slow to detect conventionally, with the risk of bacterial overgrowth from common co-habiting pan- and multiresistant bacterial pathogens from sputum. namely Pseudomonas aeruginosa and Burkholderia cepacia complex organisms, hence this species-specific PCR assay may help detect this organism from CF sputum more specifically and rapidly. Overall, employment of this novel assay nay help in the understanding of the occurrence. aetiology and epidemiology of E. dermatitidis, as an emerging fungal agent in patients with CF. (C) 2008 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Resumo:
In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kilt microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthatocyanine photosensitisers. Importantly, considerable setectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal. and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Cantello, Barrier C. C.; Eggleston, Drake S.; Haigh, David; Haltiwanger, R. Curtis; Heath, Catherine M.; Hindley, Richard M.; Jennings, Keith R.; Sime, John T.; Woroniecki, Stefan R. SmithKline Beecham Pharmaceuticals, Surrey, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1994), (22), 3319-24. Publisher: Royal Society of Chemistry, CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 122:105736 AN 1995:237497 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract A novel biotransformation system for the redn. of carbon-carbon double bonds in 5-benzylidenethiazolidine-2,4-diones to give the corresponding 5-benzylthiazolidine-1,4-diones, using whole cells of red yeasts, is described. These reduced compds., which are recovered in good yield, are of potential use in the treatment of non-insulin dependent diabetes mellitus. The mild reaction conditions developed allow redn. of 5-benzylidenethiazolidine-2,4-diones contg. other functionalities which are not compatible with alternative redn. methods. The biocatalytic redn. is enantioselective and the synthesis of R-(+)-5-(4-{2-[methyl(2-pyridyl)amino]ethoxy}benzyl)thiazolidine-2,4-dione by Rhodotorula rubra CBS 6469 and structure confirmation by X-ray crystallog. is detailed. Optimization of reaction conditions (including immobilization) for these whole cell redn. system is described.
Resumo:
Background
The identification of filamentous fungi and/or yeasts in the airway secretions of individuals with cystic fibrosis (CF) is becoming increasingly prevalent; yet the importance of these organisms in relation to underlying inflammation is poorly defined.
Methods
Cystic fibrosis bronchial epithelial cells (CFBE) and human bronchial epithelial cells (HBE) were co-incubated with Candida albicans whole cells or Aspergillus fumigatus conidia for 24 h prior to the measurement of pro-inflammatory cytokines IL-6 and IL-8 by ELISA.
Results
Treatment of HBE or CFBE with C. albicans whole cells did not alter cytokine secretion. However treatment of CFBE with A. fumigatus conidia resulted in a 1.45-fold increase in IL-6 and a 1.65-fold increase in IL-8 secretion in comparison to basal levels; in contrast there was far less secretion from HBE cells.
Conclusion
Our data indicate that A. fumigatus infection modulates a pro-inflammatory response in CF epithelial cells while C. albicans does not.
Resumo:
Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn2+ concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.
Resumo:
Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions.
Resumo:
The effects of potentially toxic metals on ectomycorrhizal (ECM) fungi and their higher plant hosts are examined in this review. Investigations at a species and community level have revealed wide inter- and intraspecific variation in sensitivity to metals. Adaptive and constitutive mechanisms of ECM tolerance are proposed and discussed in relation to proven tolerance mechanisms in bacteria, yeasts and plants. Problems with methodology and research priorities are highlighted. These include the need for a detailed understanding of the genetic basis of tolerance in the ECM symbiosis, and for studies of ECM community dynamics in polluted sites.
Resumo:
Este trabalho teve como principal objectivo sugerir uma forma de processamento de sorgo adaptável à escala industrial que, sendo culturalmente aceite e sensível aos hábitos alimentares, aos factores sociais e às limitações económicas e tecnológicas das populações Africanas de consumo, pudesse dar origem a um produto alimentar seguro e enriquecido em termos nutricionais. Numa primeira fase, efectuou-se um estudo comparativo entre os efeitos promovidos por diferentes formas de processamento: cozimento em água, aquecimento em banho-maria, pipocagem, germinação, fermentação e altapressão. Foram ainda determinadas as condições óptimas de aplicação do processo germinativo e da tecnologia de alta-pressão. Verificou-se que a fermentação, a germinação e a alta-pressão permitem uma melhoria significativa da digestibilidade proteica da farinha de sorgo. A pipocagem conduziu a uma redução da extractibilidade das proteínas não promovendo, contudo, alterações na sua digestibilidade. Comparativamente ao cozimento em água, que promove uma diminuição acentuada na digestibilidade proteica, o cozimento em banho-maria promove uma diminuição ténue e significativamente inferior. Deste estudo comparativo, foi possível concluir que a extractibilidade das proteínas não está correlacionada com a sua digestibilidade e que a água exerce um papel fundamental na diminuição da digestibilidade proteica com o aquecimento. Numa segunda fase, pretendeu-se desenvolver um processo fermentativo que conduzisse a um produto de sorgo com características nutricionais incrementadas. Para tal, foram testadas daiferentes espécies de bactérias lácticas isoladas e conjugadas entre si. Foi ainda testada a adição de malte de sorgo previamente à fermentação e a adição de leveduras ao inóculo. Com este estudo, foi possível concluir que a fermentação do sorgo com um inóculo constituído por culturas puras de Lactobacillus brevis, Lactobacillus fermentum e Streptococcus thermophilus permite a obtenção de uma preparação alimentar com características nutricionais melhoradas no que respeita ao balanço em aminoácidos essenciais, à digestibilidade da proteína e do amido e à viscosidade do produto final.
Resumo:
Várias espécies do género Candida traduzem o codão CUG de leucine como serina. Em C. albicans este codão é traduzido pelo tRNACAG Ser de serina que é reconhecido por leucil- e seril-tRNA sintetases (LeuRS e SerRS), permitindo a incorporação de leucina ou serina em posições com CUG. Em condições padrão de crescimento os codões CUG é incorporam 3% de leucina e 97% de serina, no entanto estes valores são flexíveis uma vez que a incorporação de serina pode variar entre 0.6% e 5% em resposta a condições de stress. Estudos anteriores realizados in vivo em Escherichia coli sugeriram que a ambiguidade em codões CUG é regulada pela SerRS. De facto, o gene da SerRS de C. albicans tem um codão CUG na posição 197 (Ser197) cuja descodificação ambígua resulta na produção de duas isoformas de SerRS. A isoforma SerRS_Leu197 é mais ativa, apesar de menos estável, que a isoforma SerRS_Ser197, suportando a ideia da existência de um feedback loop negativo, envolvendo estas duas isoformas de SerRS, a enzima LeuRS e o tRNACAG Ser, que mantem os níveis de incorporação de leucina no codões CUG baixos. Nesta tese demonstramos que tal mecanismo não é operacional nas células de C. albicans. De facto, os níveis de incorporação de leucina em codões CUG flutuam drasticamente em resposta a alterações ambientais. Por exemplo, a incorporação de leucina pode chegar a níveis de 49.33% na presença de macrófagos e anfotericina B, mostrando a notória tolerância de C. albicans à ambiguidade. Para compreender a relevância biológica da ambiguidade do código genético em C. albicans construímos estirpes que incorporam serina em vários codões. Apesar da taxa crescimento ter sido negativamente afetada em condições padrão de crescimento, as estirpes construídas crescem favoravelmente em várias condições de stresse, sugerindo que a ambiguidade desempenha um papel importante na adaptação a novos nichos ecológicos. O transcriptoma das estirpes construídas de C. albicans e Saccharomyces. cerevisiae mostram que as leveduras respondem à ambiguidade dos codões de modo distinto. A ambiguidade induziu uma desregulação moderada da expressão génica de C. albicans, mas ativou uma resposta comum ao stresse em S. cerevisiae. O único processo celular que foi induzido na maioria das estirpes foi a oxidação redução. De salientar, que enriquecimento em elementos cis de fatores de transcrição que regulam a resposta à ambiguidade em ambas as leveduras foi distinta, sugerindo que ambas respondem ao stresse de modo diferente. Na globalidade, o nosso estudo aprofunda o conhecimento da elevada tolerância à ambiguidade de codões em C. albicans. Os resultados sugerem que este fungo usa a ambiguidade do codão CUG durante infeção, possivelmente para modular a sua interação com o hospedeiro e a resposta a drogas antifúngicas.