949 resultados para pattern visual evoked potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early after stroke, there is loss of intracortical facilitation (ICF) and increase in short-interval intracortical inhibition (SICI) in the primary motor cortex (M1) contralateral to a cerebellar infarct. Our goal was to investigate intracortical M1 function in the chronic stage following cerebellar infarcts (> 4 months). We measured resting motor threshold (rMT), SICI, ICF, and ratios between motor-evoked potential amplitudes (MEP) and supramaximal M response amplitudes (MEP/M; %), after transcranial magnetic stimulation was applied to the M1 contralateral (M1(contralesional)) and ipsilateral (M1(ipsilesional)) to the cerebellar infarct in patients and to both M1s of healthy age-matched volunteers. SICI was decreased in M1(contralesional) compared to M1(ipsilesional) in the patient group in the absence of side-to-side differences in controls. There were no significant interhemispheric or between-group differences in rMT, ICF, or MEP/M (%). Our results document disinhibition of M1(contralesional) in the chronic phase after cerebellar stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avaliar a função auditiva em usuários de dispositivos eletrônicos aplicados a surdez é muito importante para o processo de reabilitação. Entretanto, nestes indivíduos os procedimentos devem ser realizados em campo livre. OBJETIVO: Analisar a aplicabilidade do potencial cognitivo P300 pesquisado em campo livre. FORMA DE ESTUDO: Clínico prospectivo. MATERIAL E MÉTODO: Foram avaliados 33 indivíduos de ambos os sexos com idade entre 7 e 34 anos, com audição normal e sem fator de risco para problemas mentais. O potencial cognitivo P300 foi realizado por meio do equipamento Biologic's Evoked Potential System (EP), com fones de inserção (3A) e em campo livre (0º Azimute e 45º Azimute). RESULTADOS: Não houve diferença estatisticamente significante para a latência do N2 e P300 e amplitude do P300 quando analisado o sexo e o modo de realização do teste (fone e campo livre), assim como não houve diferença ao comparar as medidas em campo livre a 0º e 45º Azimute. CONCLUSÃO: A pesquisa do potencial cognitivo P300 em campo livre é um procedimento viável de ser realizado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cerebral ischemic preconditioning (IPC), a first sublethal ischemia increases the resistance of neurons to a subsequent severe ischemia. Despite numerous studies, the mechanisms are not yet fully understood. Our goal is to develop an in vitro model of IPC on hippocampal organotypic slice cultures. Instead of anoxia, we chose to apply varying degrees of hypoxia that allows us various levels of insult graded from mild to severe. Cultures are exposed to combined oxygen and glucose deprivation (OGD) of varying intensities, ranging from mild to severe, assessing both the electrical activity and cell death. IPC was accomplished by exposure to the mildest ischemia condition (10% of O2 for 15 min) 24 h before the severe deprivation (5% of O2 for 30 min). Interestingly, IPC not only prevented delayed ischemic cell death 6 days after insult but also the transient loss of evoked potential response. The major interest and advantage of this system over both the acute slice preparation and primary cell cultures is the ability to simultaneously measure the delayed neuronal damage and neuronal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Discrimination of species-specific vocalizations is fundamental for survival and social interactions. Its unique behavioral relevance has encouraged the identification of circumscribed brain regions exhibiting selective responses (Belin et al., 2004), while the role of network dynamics has received less attention. Those studies that have examined the brain dynamics of vocalization discrimination leave unresolved the timing and the inter-relationship between general categorization, attention, and speech-related processes (Levy et al., 2001, 2003; Charest et al., 2009). Given these discrepancies and the presence of several confounding factors, electrical neuroimaging analyses were applied to auditory evoked-potential (AEPs) to acoustically and psychophysically controlled non-verbal human and animal vocalizations. This revealed which region(s) exhibit voice-sensitive responses and in which sequence. Methods: Subjects (N=10) performed a living vs. man-made 'oddball' auditory discrimination task, such that on a given block of trials 'target' stimuli occurred 10% of the time. Stimuli were complex, meaningful sounds of 500ms duration. There were 120 different sound files in total, 60 of which represented sounds of living objects and 60 man-made objects. The stimuli that were the focus of the present investigation were restricted to those of living objects within blocks where no response was required. These stimuli were further sorted between human non-verbal vocalizations and animal vocalizations. They were also controlled in terms of their spectrograms and formant distributions. Continuous 64-channel EEG was acquired through Neuroscan Synamps referenced to the nose, band-pass filtered 0.05-200Hz, and digitized at 1000Hz. Peri-stimulus epochs of continuous EEG (-100ms to 900ms) were visually inspected for artifacts, 40Hz low-passed filtered and baseline corrected using the pre-stimulus period . Averages were computed from each subject separately. AEPs in response to animal and human vocalizations were analyzed with respect to differences of Global Field Power (GFP) and with respect to changes of the voltage configurations at the scalp (reviewed in Murray et al., 2008). The former provides a measure of the strength of the electric field irrespective of topographic differences; the latter identifies changes in spatial configurations of the underlying sources independently of the response strength. In addition, we utilized the local auto-regressive average distributed linear inverse solution (LAURA; Grave de Peralta Menendez et al., 2001) to visualize and statistically contrast the likely underlying sources of effects identified in the preceding analysis steps. Results: We found differential activity in response to human vocalizations over three periods in the post-stimulus interval, and this response was always stronger than that to animal vocalizations. The first differential response (169-219ms) was a consequence of a modulation in strength of a common brain network localized into the right superior temporal sulcus (STS; Brodmann's Area (BA) 22) and extending into the superior temporal gyrus (STG; BA 41). A second difference (291-357ms) also followed from strength modulations of a common network with statistical differences localized to the left inferior precentral and prefrontal gyrus (BA 6/45). These two first strength modulations correlated (Spearman's rho(8)=0.770; p=0.009) indicative of functional coupling between temporally segregated stages of vocalization discrimination. A third difference (389-667ms) followed from strength and topographic modulations and was localized to the left superior frontal gyrus (BA10) although this third difference did not reach our spatial criterion of 12 continuous voxels. Conclusions: We show that voice discrimination unfolds over multiple temporal stages, involving a wide network of brain regions. The initial stages of vocalization discrimination are based on modulations in response strength within a common brain network with no evidence for a voice-selective module. The latency of this effect parallels that of face discrimination (Bentin et al., 2007), supporting the possibility that voice and face processes can mutually inform one another. Putative underlying sources (localized in the right STS; BA 22) are consistent with prior hemodynamic imaging evidence in humans (Belin et al., 2004). Our effect over the 291-357ms post-stimulus period overlaps the 'voice-specific-response' reported by Levy et al. (Levy et al., 2001) and the estimated underlying sources (left BA6/45) were in agreement with previous findings in humans (Fecteau et al., 2005). These results challenge the idea that circumscribed and selective areas subserve con-specific vocalization processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The repeated presentation of simple objects as well as biologically salient objects can cause the adaptation of behavioral and neural responses during the visual categorization of these objects. Mechanisms of response adaptation during repeated food viewing are of particular interest for better understanding food intake beyond energetic needs. Here, we measured visual evoked potentials (VEPs) and conducted neural source estimations to initial and repeated presentations of high-energy and low-energy foods as well as non-food images. The results of our study show that the behavioral and neural responses to food and food-related objects are not uniformly affected by repetition. While the repetition of images displaying low-energy foods and non-food modulated VEPs as well as their underlying neural sources and increased behavioral categorization accuracy, the responses to high-energy images remained largely invariant between initial and repeated encounters. Brain mechanisms when viewing images of high-energy foods thus appear less susceptible to repetition effects than responses to low-energy and non-food images. This finding is likely related to the superior reward value of high-energy foods and might be one reason why in particular high-energetic foods are indulged although potentially leading to detrimental health consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: EEG and somatosensory evoked potential are highly predictive of poor outcome after cardiac arrest; their accuracy for good recovery is however low. We evaluated whether addition of an automated mismatch negativity-based auditory discrimination paradigm (ADP) to EEG and somatosensory evoked potential improves prediction of awakening. METHODS: EEG and ADP were prospectively recorded in 30 adults during therapeutic hypothermia and in normothermia. We studied the progression of auditory discrimination on single-trial multivariate analyses from therapeutic hypothermia to normothermia, and its correlation to outcome at 3 months, assessed with cerebral performance categories. RESULTS: At 3 months, 18 of 30 patients (60%) survived; 5 had severe neurologic impairment (cerebral performance categories = 3) and 13 had good recovery (cerebral performance categories = 1-2). All 10 subjects showing improvements of auditory discrimination from therapeutic hypothermia to normothermia regained consciousness: ADP was 100% predictive for awakening. The addition of ADP significantly improved mortality prediction (area under the curve, 0.77 for standard model including clinical examination, EEG, somatosensory evoked potential, versus 0.86 after adding ADP, P = 0.02). CONCLUSIONS: This automated ADP significantly improves early coma prognostic accuracy after cardiac arrest and therapeutic hypothermia. The progression of auditory discrimination is strongly predictive of favorable recovery and appears complementary to existing prognosticators of poor outcome. Before routine implementation, validation on larger cohorts is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Most cases of neuroretinitis (NR) are idiopathic or due to cat scratch disease and occur as a single episode but a subgroup of patients experience recurrent attacks with cumulative visual loss. We reviewed our cases of NR to better characterize the clinical features of these subgroups in an effort to predict the risk of recurrence. Methods: Retrospective study of NR patients from a single institution. Sixty-seven patients were divided into three groups: 22 cases due to cat scratch disease (CSD-NR), 24 with idiopathic neuroretinitis (I-NR) and 21 (23 eyes) with recurrent neuroretinitis (R-NR). Results: Preceding systemic symptoms, predominantly central visual field (VF) loss and the combination of poor acuity with small relative afferent pupillary defect at presentation were common features of CSD-NR. There were no cases of recurrent CSD-NR. In the first attack of R-NR, the magnitude of VF loss at presentation was greater compared to the other two groups. While 39% of R-NR had a pattern of VF loss other than a central or cecocentral scotoma, only 13.6% of CSD-NR and 17% of I-NR showed this pattern. Visual recovery was least substantial for the R-NR group (average gain of 3.7 lines of Snellen acuity vs. 5 and 6.4 lines for CSD-NR and I-NR, respectively, and an average gain in VF score of 5.1 in the R-NR group compared to 8.2 and 11.5 for the other two groups). Conclusion: The main predictive factors for recurrence are absence of systemic symptoms, significant VF loss at presentation, particularly loss outside the central 30°, and less substantial visual recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite myriad studies, neurophysiologic mechanisms mediating illusory contour (IC) sensitivity remain controversial. Among the competing models one favors feed-forward effects within lower-tier cortices (V1/V2). Another situates IC sensitivity first within higher-tier cortices, principally lateral-occipital cortices (LOC), with later feedback effects in V1/V2. Still others postulate that LOC are sensitive to salient regions demarcated by the inducing stimuli, whereas V1/V2 effects specifically support IC sensitivity. We resolved these discordances by using misaligned line gratings, oriented either horizontally or vertically, to induce ICs. Line orientation provides an established assay of V1/V2 modulations independently of IC presence, and gratings lack salient regions. Electrical neuroimaging analyses of visual evoked potentials (VEPs) disambiguated the relative timing and localization of IC sensitivity with respect to that for grating orientation. Millisecond-by-millisecond analyses of VEPs and distributed source estimations revealed a main effect of grating orientation beginning at 65 ms post-stimulus onset within the calcarine sulcus that was followed by a main effect of IC presence beginning at 85 ms post-stimulus onset within the LOC. There was no evidence for differential processing of ICs as a function of the orientation of the grating. These results support models wherein IC sensitivity occurs first within the LOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Do our brains implicitly track the energetic content of the foods we see? Using electrical neuroimaging of visual evoked potentials (VEPs) we show that the human brain can rapidly discern food's energetic value, vis à vis its fat content, solely from its visual presentation. Responses to images of high-energy and low-energy food differed over two distinct time periods. The first period, starting at approximately 165 ms post-stimulus onset, followed from modulations in VEP topography and by extension in the configuration of the underlying brain network. Statistical comparison of source estimations identified differences distributed across a wide network including both posterior occipital regions and temporo-parietal cortices typically associated with object processing, and also inferior frontal cortices typically associated with decision-making. During a successive processing stage (starting at approximately 300 ms), responses differed both topographically and in terms of strength, with source estimations differing predominantly within prefrontal cortical regions implicated in reward assessment and decision-making. These effects occur orthogonally to the task that is actually being performed and suggest that reward properties such as a food's energetic content are treated rapidly and in parallel by a distributed network of brain regions involved in object categorization, reward assessment, and decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia