844 resultados para partial least square
Resumo:
Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R 2 =0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w-1) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Development of empirical potentials for amorphous silica Amorphous silica (SiO2) is of great importance in geoscience and mineralogy as well as a raw material in glass industry. Its structure is characterized as a disordered continuous network of SiO4 tetrahedra. Many efforts have been undertaken to understand the microscopic properties of silica by classical molecular dynamics (MD) simulations. In this method the interatomic interactions are modeled by an effective potential that does not take explicitely into account the electronic degrees of freedom. In this work, we propose a new methodology to parameterize such a potential for silica using ab initio simulations, namely Car-Parrinello (CP) method [Phys. Rev. Lett. 55, 2471 (1985)]. The new potential proposed is compared to the BKS potential [Phys. Rev. Lett. 64, 1955 (1990)] that is considered as the benchmark potential for silica. First, CP simulations have been performed on a liquid silica sample at 3600 K. The structural features so obtained have been compared to the ones predicted by the classical BKS potential. Regarding the bond lengths the BKS tends to underestimate the Si-O bond whereas the Si-Si bond is overestimated. The inter-tetrahedral angular distribution functions are also not well described by the BKS potential. The corresponding mean value of theSiOSi angle is found to be ≃ 147◦, while the CP yields to aSiOSi angle centered around 135◦. Our aim is to fit a classical Born-Mayer/Coulomb pair potential using ab initio calculations. To this end, we use the force-matching method proposed by Ercolessi and Adams [Europhys. Lett. 26, 583 (1994)]. The CP configurations and their corresponding interatomic forces have been considered for a least square fitting procedure. The classical MD simulations with the resulting potential have lead to a structure that is very different from the CP one. Therefore, a different fitting criterion based on the CP partial pair correlation functions was applied. Using this approach the resulting potential shows a better agreement with the CP data than the BKS ones: pair correlation functions, angular distribution functions, structure factors, density of states and pressure/density were improved. At low temperature, the diffusion coefficients appear to be three times higher than those predicted by the BKS model, however showing a similar temperature dependence. Calculations have also been carried out on crystalline samples in order to check the transferability of the potential. The equilibrium geometry as well as the elastic constants of α-quartz at 0 K are well described by our new potential although the crystalline phases have not been considered for the parameterization. We have developed a new potential for silica which represents an improvement over the pair potentials class proposed so far. Furthermore, the fitting methodology that has been developed in this work can be applied to other network forming systems such as germania as well as mixtures of SiO2 with other oxides (e.g. Al2O3, K2O, Na2O).
Resumo:
BACKGROUND: The arterial pharmacokinetics of ketamine and norketamine enantiomers after racemic ketamine or S-ketamine i.v. administration were evaluated in seven gelding ponies in a crossover study (2-month interval). METHODS: Anaesthesia was induced with isoflurane in oxygen via a face-mask and then maintained at each pony's individual MAC. Racemic ketamine (2.2 mg kg(-1)) or S-ketamine (1.1 mg kg(-1)) was injected in the right jugular vein. Blood samples were collected from the right carotid artery before and at 1, 2, 4, 8, 16, 32, 64, and 128 min after ketamine administration. Ketamine and norketamine enantiomer plasma concentrations were determined by capillary electrophoresis. Individual R-ketamine and S-ketamine concentration vs time curves were analysed by non-linear least square regression two-compartment model analysis using PCNonlin. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating AUC, C(max), and T(max). Pulse rate (PR), respiratory rate (R(f)), tidal volume (V(T)), minute volume ventilation (V(E)), end-tidal partial pressure of carbon dioxide (PE'(CO(2))), and mean arterial blood pressure (MAP) were also evaluated. RESULTS: The pharmacokinetic parameters of S- and R-ketamine administered in the racemic mixture or S-ketamine administered separately did not differ significantly. Statistically significant higher AUC and C(max) were found for S-norketamine compared with R-norketamine in the racemic group. Overall, R(f), V(E), PE'(CO(2)), and MAP were significantly higher in the racemic group, whereas PR was higher in the S-ketamine group. CONCLUSIONS: Norketamine enantiomers showed different pharmacokinetic profiles after single i.v. administration of racemic ketamine in ponies anaesthetised with isoflurane in oxygen (1 MAC). Cardiopulmonary variables require further investigation.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981-2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 - MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.
Resumo:
In this work, it was developed and validated methodologies that were based on the use of Infrared Spectroscopy Mid (MIR) combined with multivariate calibration Square Partial Least (PLS) to quantify adulterants such as soybean oil and residual soybean oil in methyl and ethyl palm biodiesels in the concentration range from 0.25 to 30.00 (%), as well as to determine methyl and ethyl palm biodiesel content in their binary mixtures with diesel in the concentration range from 0.25 to 30.00 (%). The prediction results showed that PLS models constructed are satisfactory. Errors Mean Square Forecast (RMSEP) of adulteration and content determination showed values of 0.2260 (%), with mean error (EM) with values below 1.93 (%). The models also showed a strong correlation between actual and predicted values, staying above 0.99974. No systematic errors were observed, in accordance to ASTM E1655- 05. Thus the built PLS models, may be a promising alternative in the quality control of this fuel for possible adulterations or to content determination.
Resumo:
Biodiesel is a renewable fuel derived from vegetable oils or animal fats, which can be a total or partial substitute for diesel. Since 2005, this fuel was introduced in the Brazilian energy matrix through Law 11.097 that determines the percentage of biodiesel added to diesel oil as well as monitoring the insertion of this fuel in market. The National Agency of Petroleum, Natural Gas and Biofuels (ANP) establish the obligation of adding 7% (v/v) of biodiesel to diesel commercialized in the country, making crucial the analytical control of this content. Therefore, in this study were developed and validated methodologies based on the use of Mid Infrared Spectroscopy (MIR) and Multivariate Calibration by Partial Least Squares (PLS) to quantify the methyl and ethyl biodiesels content of cotton and jatropha in binary blends with diesel at concentration range from 1.00 to 30.00% (v/v), since this is the range specified in standard ABNT NBR 15568. The biodiesels were produced from two routes, using ethanol or methanol, and evaluated according to the parameters: oxidative stability, water content, kinematic viscosity and density, presenting results according to ANP Resolution No. 45/2014. The built PLS models were validated on the basis of ASTM E1655-05 for Infrared Spectroscopy and Multivariate Calibration and ABNT NBR 15568, with satisfactory results due to RMSEP (Root Mean Square Error of Prediction) values below 0.08% (<0.1%), correlation coefficients (R) above 0.9997 and the absence of systematic error (bias). Therefore, the methodologies developed can be a promising alternative in the quality control of this fuel.
Resumo:
A number of studies have shown that Fourier transform infrared spectroscopy (FTIR) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIR for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0-2.9%), and total inorganic carbon (TIC; n= 152; gradient: 0-0.4%) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2CV = 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was ~3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary.
Resumo:
Ocean acidification, which like global warming is an outcome of anthropogenic CO2emissions, severely impacts marine calcifying organisms, especially those living in coral reef ecosystems. However, knowledge about the responses of reef calcifiers to ocean acidification is quite limited, although coral responses are known to be generally negative. In a culture experiment with two algal symbiont-bearing, reef-dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii, in seawater under five different pCO2 conditions, 245, 375, 588, 763 and 907 µatm, maintained with a precise pCO2-controlling technique, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas calcification of C. gaudichaudii generally increased with increased pCO2. In another culture experiment conducted in seawater in which bicarbonate ion concentrations were varied under a constant carbonate ion concentration, calcification was not significantly different between treatments in Amphisorus hemprichii, a species closely related to A. kudakajimensis, or in C. gaudichaudii. From these results, we concluded that carbonate ion and CO2 were the carbonate species that most affected growth ofAmphisorus and Calcarina, respectively. The opposite responses of these two foraminifer genera probably reflect different sensitivities to these carbonate species, which may be due to their different symbiotic algae.
Resumo:
Considering the social and economic importance that the milk has, the objective of this study was to evaluate the incidence and quantifying antimicrobial residues in the food. The samples were collected in dairy industry of southwestern Paraná state and thus they were able to cover all ten municipalities in the region of Pato Branco. The work focused on the development of appropriate models for the identification and quantification of analytes: tetracycline, sulfamethazine, sulfadimethoxine, chloramphenicol and ampicillin, all antimicrobials with health interest. For the calibration procedure and validation of the models was used the Infrared Spectroscopy Fourier Transform associated with chemometric method based on Partial Least Squares regression (PLS - Partial Least Squares). To prepare a work solution antimicrobials, the five analytes of interest were used in increasing doses, namely tetracycline from 0 to 0.60 ppm, sulfamethazine 0 to 0.12 ppm, sulfadimethoxine 0 to 2.40 ppm chloramphenicol 0 1.20 ppm and ampicillin 0 to 1.80 ppm to perform the work with the interest in multiresidues analysis. The performance of the models constructed was evaluated through the figures of merit: mean square error of calibration and cross-validation, correlation coefficients and offset performance ratio. For the purposes of applicability in this work, it is considered that the models generated for Tetracycline, Sulfadimethoxine and Chloramphenicol were considered viable, with the greatest predictive power and efficiency, then were employed to evaluate the quality of raw milk from the region of Pato Branco . Among the analyzed samples by NIR, 70% were in conformity with sanitary legislation, and 5% of these samples had concentrations below the Maximum Residue permitted, and is also satisfactory. However 30% of the sample set showed unsatisfactory results when evaluating the contamination with antimicrobials residues, which is non conformity related to the presence of antimicrobial unauthorized use or concentrations above the permitted limits. With the development of this work can be said that laboratory tests in the food area, using infrared spectroscopy with multivariate calibration was also good, fast in analysis, reduced costs and with minimum generation of laboratory waste. Thus, the alternative method proposed meets the quality concerns and desired efficiency by industrial sectors and society in general.
Resumo:
The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.