982 resultados para parasitoid-host interaction
Resumo:
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
Resumo:
As part of an evaluation of the braconid parasitoid Diachasmimorpha longicaudata (Ashmead) as a biocontrol agent of Ceratitis capitata (Wiedemann) in Brazil, the aims in the current study were to find the best parental ratio of females to males in the rearing cages in order to get the highest female biased offspring in the parasitoid rearing process, and to verify the parasitism efficiency on C. capitata according to parental female densities. Three treatments were assessed: T1 (20 females: 20 males), T2 (60 females: 20 males) and T3 (100 females: 20 males). Ten late-third instars of C. capitata were offered daily to each female parasitoid from the 1st to the 12th d of age. The parental female productivity, fecundity, offspring sex ratio, percentage of parasitoid emergence, and daily mortality of parental females and males at different female/male densities were evaluated. The results indicated that numbers higher than 20 parental females did not affect offspring sex ratio, overall offspring production, nor the percent parasitism. Female biased offspring occurred in all three parental female/male ratios analyzed in this study, except that predominately males developed from parasitoid eggs laid in the age interval 1-2 d post emergence. Higher parasitoid female productivity and fecundity were found at the 1:1 female/male per cage density whereas lower productivity and fecundity were recorded at the 5:1 female/male ratio. Higher female/male ratio in the parental cages increased the mortality rate of females but did not influence the number of parental male deaths. The results may facilitate advancement of an optimum mass-rearing system to aid in control of C. capitata in Brazil.
Resumo:
Nowadays, rice is among the most preferred crops for rotation with soybean and cotton in the large producing areas of Central Brazil. Nevertheless, the host status of the Brazilian upland rice cultivars for Meloidogyne incognita race 4 and Rotylenchulus reniformis has not been investigated and remains unknown. This study dealt with the assessment of the host response of some selected Brazilian upland rice cultivars to these nematodes under glasshouse conditions. The host status for each tested interaction was based on the nematode reproduction factor (RF) and number of nematodes (g root)(-1). Two experiments with M. incognita race 4, referred to as trial I (initial population (IP) = 4000) and trial 2 (IP = 800), included, respectively, 14 cultivars (cvs AN Cirad 141, BRS Monarca, BRS Primavera, AN Cambara, BRS Pepita, BRS Curinga, BRS Sertaneja, IAPAR 9, IAPAR 62, IAPAR 63, IAPAR 64, IAPAR 117, IAC 201, IAC 202) and 19 cultivars (the same ones in Experiment 1 plus cvs BRS Maravilha, BRS Talento, BRS Bonanca, Ricetec Ecco, BRS Soberana). Except for cv. BRS Pepita, rated as resistant, the cultivars were rated as susceptible or moderately susceptible (RF means ranged from 1.09 to 12.56). In a third experiment with R. reniformis (IP = 1800) that included the same cultivars as in Experiment I, all cultivars were rated as resistant (RF means ranged from 0.01 to 0.29).
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
2. We documented the within-host distribution of two vector species that differ in transmission efficiency, the leafhoppers Draeculacephala minerva and Graphocephala atropunctata, and which are free to move throughout entirely caged alfalfa plants. The more efficient vector D. minerva fed preferentially at the base of the plant near the soil surface, whereas the less efficient G. atropunctata preferred overwhelming the top of the plant. 3. Next we documented X. fastidiosa heterogeneity in mechanically inoculated plants. Infection rates were up to 50% higher and mean bacterial population densities were 100-fold higher near the plant base than at the top or in the taproot. 4. Finally, we estimated transmission efficiency of the two leafhoppers when they were confined at either the base or top of inoculated alfalfa plants. Both vectors were inefficient when confined at the top of infected plants and were 20-60% more efficient when confined at the plant base. 5. These results show that vector transmission efficiency is determined by the interaction between leafhopper within-plant feeding behaviour and pathogen within-plant distribution. Fine-scale vector and pathogen overlap is likely to be a requirement generally for efficient transmission of vector-borne pathogens.
Resumo:
In a series of tritrophic-level interaction experiments, the effect of selected host plants of the spider mites, Tetranychus evansi and Tetranychus urticae, on Neozygites floridana was studied by evaluating the attachment of capilliconidia, presence of hyphal bodies in the infected mites, mortality from fungal infection, mummification and sporulation from fungus-killed mite cadavers. Host plants tested for T. evansi were tomato, cherry tomato, eggplant, nightshade, and pepper while host plants tested for T. urticae were strawberry, jack bean, cotton and Gerbera. Oviposition rate of the mites on each plant was determined to infer host plant suitability while host-switching determined antibiosis effect on fungal activity. T. evansi had a high oviposition on eggplant, tomato and nightshade but not on cherry tomato and pepper. T. urticae on jack bean resulted in a higher oviposition than on strawberry, cotton and Gerbera. Attachment of capilliconidia to the T. evansi body, presence of hyphal bodies in infected T. evansi and mortality from fungal infection were significantly higher on pepper, nightshade and tomato. The highest level of T. evansi mummification was observed on tomato. T. evansi cadavers from tomato and eggplant produced more primary conidia than those from cherry tomato, nightshade and pepper. Switching N. floridana infected T. evansi from one of five Solanaceous host plants to tomato had no prominent effect on N. floridana performance. For T. urticae, strawberry and jack bean provided the best N. floridana performance when considering all measured parameters. Strawberry also had the highest primary conidia production. This study shows that performance of N. floridana can vary with host plants and may be an important factor for the development of N. floridana epizootics. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
To aid in the development of artificial diets for mass rearing parasitioids, we investigated the anatomical changes in the digestive tract during feeding behaviour of larval Trichogramma australicum (Hymenoptera: Trichogrammatidae). Larvae begin to feed immediately upon eclosion and feed continuously for 4 h until replete. Feeding is characterised by rhythmic muscle contractions (ca 1 per s) of the pharynx. Contractions of the pharyngeal dilator muscles lift the roof of the lobe-shaped pharynx away from the floor of the chamber, opening the mouth and pumping food into the pharyngeal cavity. Another muscle contraction occurs about 0.5 s later, forcing the bolus of food through the oesophagus and into the midgut. The junction of fore- and midgut is marked by a cardiac valve. The midgut occupies most of the body cavity and is lined with highly vacuolated, flattened cells and a dispersed layer of muscle cells. In the centre of the midgut, food has the appearance of host egg contents. Food near the midgut epithelial cells has a finer, more homogeneous appearance. This change in the physical properties of the gut contents is indicative of the digestion process. In the prepupa, where digestion is complete, the entire gut contents have this appearance. After eclosion, the vitelline membrane remains attached to the posterior end of the larva. We believe this attachment to be adaptive in two ways: (1) to anchor the larva against the movements of its anterior portion, thereby increasing the efficiency of foraging within the egg, and (2) to prevent a free-floating membrane from clogging the mouthparts during ingestion. 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Glasshouse experiments determined effects of a moth, Helicoverpa armigera (Lepidoptera: Noctuidae), and the anthracnose pathogen, Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., on each other when attacking the same host plant, Stylosanthes scabra (Vog.) (Leguminosae) cv. Fitzroy. The host was treated with both organisms in 2 ways of succession and at 2 different life stages each. Larvae of the moth preferred to feed on healthy plants rather than plants recently infected with C. gloeosporioides, and preferred such newly infected plants to severely diseased ones. Adult female moths laid more eggs on healthy and recently infected plants than on diseased plants, when given a choice of all 3 plant types. Severity of anthracnose disease was neither promoted nor retarded by damage to leaves caused by larvae of the moth.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
The gregarious braconid wasp Cotesia congregata parasitizes host larvae of Manduca sexta, and several other sphingid species. Parasitism induces host immunosuppression due to the disruptive action of the wasp's polydnavirus (PDV) on host blood cells. During the initial stages of parasitism, these cells undergo apoptosis followed by cell clumping, which clears the hemolymph of a large number of cells. In this study, the persistence and expression of Cotesia congregata PDV (CcPDV) were examined using Southern and Nor-them blots, respectively. Digoxygenin-labelled total polydnaviral DNA was used to probe genomic DNA isolated from fat body and brains of hosts with emerged wasps taken 6 days following egress of the parasitoids, and significant cross-hybridization between the host fat body genomic DNA with viral DNA was seen. Thus, the virus persists in the host for the duration of parasitism. even during the post-emergence period, and may even be integrated in the host caterpillar DNA. Viral gene expression was examined using Northern blots and probes to the Cotesia rubecula CrV1 homolog, and the CrV1-like mRNAs were expressed as early as 4 h post-parasitization for at least 72 h and faint hybrization is even seen at the time the wasps eclose. In contrast, in Pieris rapae larvae the CrV1 transcript is expressed only for a brief time, during which time hemocyte function is disrupted. The effect is transitory, and hemocytes regain their normal functions after the parasites emerge as first instars. The genome of CcPDV contains one copy of the CrV1-like homolog as shown on Southern blots of viral genomic DNA. In conjunction with our earlier studies of the PDV-encoded early protein 1, the current work suggests multiple viral transcripts are produced following parasitization of the host. and likely target host hemocytes to induce their apoptosis, thereby preventing encapsulation of the parasitoid's eggs. Whether viral DNAs are integrated in the host's genomic DNA remains to be proven, but our results provide preliminary evidence that viral DNAs are detected in the host's fat body cells examined at the time of wasp ernergence and several days later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus. However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largely unknown. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different populations (reared for similar to 30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts, indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.
Resumo:
Neuroimmunomodulation describes the field focused on understanding the mechanisms by which the central nervous system interacts with the immune system, potentially leading to changes in animal behavior. Nonetheless, not many articles dealing with neuroimmunomodulation employ behavior as an analytical endpoint. Even fewer papers deal with social status as a possible modifier of neuroimmune phenomena. In the described sets of experiments, we tackle both, using a paradigm of social dominance and subordination. We first review data on the effects of different ranks within a stable hierarchical relationship. Submissive mice in this condition display more anxiety-like behaviors, have decreased innate immunity, and show a decreased resistance to implantation and development of melanoma metastases in their lungs. This suggests that even in a stable, social, hierarchical rank, submissive animals may be subjected to higher levels of stress, with putative biological relevance to host susceptibility to disease. Second, we review data on how dominant and submissive mice respond differentially to lipopolysaccharide (LPS), employing a motivational perspective to sickness behavior. Dominant animals display decreased number and frequency in several aspects of behavior, particularly agonistic social interaction, that is, directed toward the submissive cage mate. This was not observed in submissive mice that maintained the required behavior expected by its dominant mate. Expression of sickness behavior relies on motivational reorganization of priorities, which are different along different social ranks, leading to diverse outcomes. We suggest that in vitro assessment of neuroimmune phenomena can only be understood based on the behavioral context in which they occur.
Resumo:
1. Parasitoids are predicted to spend longer in patches with more hosts, but previous work on Cotesia rubecula (Marshall) has not upheld this prediction, Tests of theoretical predictions may be affected by the definition of patch leaving behaviour, which is often ambiguous. 2. In this study whole plants were considered as patches and assumed that wasps move within patches by means of walking or flying. Within-patch and between-patch flights were distinguished based on flight distance. The quality of this classification was tested statistically by examination of log-survivor curves of flight times. 3. Wasps remained longer in patches with higher host densities, which is consistent with predictions of the marginal value theorem (Charnov 1976). tinder the assumption that each flight indicates a patch departure, there is no relationship between host density and leaving tendency. 4. Oviposition influences the patch leaving behaviour of wasps in a count down fashion (Driessen et al. 1995), as predicted by an optimal foraging model (Tenhumberg, Keller & Possingham 2001). 5. Wasps spend significantly longer in the first patch encountered following release, resulting in an increased rate of superparasitism.
Resumo:
The cotton bollworm (Helicoverpa armigera) prefers the common sowthistle (Sonchus oleraceus L.) to cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) for oviposition in the field in Australia. Using the common sowthistle and cotton as host plants, we carried out this study to evaluate genetic variation in both oviposition preference and larval growth and genetic correlation between maternal preference and larval performance. There was a significant genetic component of phenotypic variation in both characters, and the heritability of oviposition preference was estimated as 0.602. Helicoverpa armigera larvae survived slightly better and grew significantly faster on common sowthistle than on cotton, but genetic correlation between maternal preference and larval growth performance was not detectable. Instead, larval growth performance on the two hosts changed with families, which renders the interaction between family and host plant significant. As a result, the genetic correlation between mean values of larval growth across the two host species was not different from zero. These results are discussed in the context of the relationship between H. armigera and the common sowthistle and the polyphagous behaviour of this insect in general.