992 resultados para palaeogeography
Resumo:
Three well-dated pollen diagrams from 1985 m, 2050 m, and at the tree line at 2150 m asl show the vegetational succession in the central Altai Mountains since 16 cal ka BP. Pioneer vegetation after deglaciation was recorded first at the lowest site. Subsequently, dense dry steppe vegetation developed coincident with the change from silt to organic sediments at the two lower sites, but silt lasted longer at the highest site, indicating the persistence of bare ground there. Forests of Pinus sibirica, Pinus sylvestris, Picea obovata, Larix sibirica, Abies sibirica, and Betula pendula started to develop about 12 cal ka BP with the change to a warmer and wetter climate at the beginning of the Holocene. Results indicate that the timberline did not rise above the highest site. Mesophilous dark-coniferous forests were fully developed by 9.5 cal ka BP. The role of Abies and Picea decreased by about 7.5 cal ka BP suggesting cooler climate, after which the forests changed little until today. The vegetational development in this portion of the central Altai Mountains is compatible with that described in neighbouring areas of the Altai, southern Siberia, Mongolia, and Kazakhstan.
Resumo:
The use of magnetic measurements in the detection of fire signals has been neglected since the work of Rummery et al., (1979), yet considerable developments have been made in the interpretation of magnetic measurements over the last 16 years. This paper presents a study of the fire history of Lago di Origlio in the southern Swiss Alps. The study utilises the technique of mineral magnetism alongside the stratigraphic pollen, spore and charcoal records. Correlation between the various proxy records indicates that a magnetic ‘fire’ record is present within the sediments for the last 4 ka. The magnetic fire record has a distinct mineralogical and magnetic grain size signature that can be recognised against the background sedimentary signal. The results suggest that magnetic measurements may be usefully employed in the reconstruction of fire history. Their application is rapid and non-destructive and the results may provide additional information in relation to the links between catchment fire events and the sedimentary record.
Resumo:
Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.
Resumo:
Qualitative and quantitative changes in fossil flora and fauna have been used in many studies to infer climatic change. Here we ask a different question: how do flora and fauna respond to climatic changes such as rapid warming or cooling? As an independent proxy for paleotemperature we take the ratio of oxygen isotopes in biogenically precipitated lake marl and in ostracod shells. This introductory paper describes the project design and the five sites on an altitudinal transect from 600 m to about 2300 m asl in the western Swiss Alps. As cases of climatic cooling and warming we use the beginning and end of the Younger Dryas as major changes, and the Gerzensee and Preboreal oscillations as minor changes. At the two sites of Gerzensee and Leysin these changes are recorded in stable-isotope ratios, and there the time scales can be derived by correlations to the GRIP ice core (Schwander et al., 2000 and von Grafenstein et al., 2000). Biotic responses to climate changes are treated in individual papers using pollen (Wick, 2000), plant macrofossils (Tobolski and Ammann, 2000), and remains of chironomids (Brooks, 2000), beetles and other insects (Lemdahl, 2000), and chydorid Cladocera (Hofmann, 2000). They are followed by a synthesis focusing on quantification of biotic responses (Ammann et al., 2000). In addition, a reconstruction of summer temperatures for the Allerød and the Younger Dryas at Gerzensee is provided by Lotter et al. (2000).
Resumo:
To assess the presence or absence of lags in biotic responses to rapid climatic changes, we: (1) assume that the δ18O in biogenically precipitated carbonates record global or hemispheric climatic change at the beginning and at the end of the Younger Dryas without any lag at our two study sites of Gerzensee and Leysin, Switzerland; (2) derive a time scale by correlating the δ18O record from these two sites with the δ18O record of the GRIP ice core; (3) measure δ18O records in ostracods and molluscs to check the record in the bulk samples and to detect possible hydrological changes; (4) analyse at Gerzensee and Leysin as well as at two additional sites (that lack carbonates and hence a δ18O record) pollen, plant macrofossils, chironomids, beetles and other insects, and Cladocera; (5) estimate our sampling resolution using the GRIP time scale for the isotope stratigraphies and the biostratigraphies; and (6) summarise the major patterns of compositional change in the biostratigraphies by principal component analysis or correspondence analysis. We conclude that, at the major climatic shifts at the beginning and end of the Younger Dryas, hardly any biotic lags occur (within the sampling resolution of 8–30 years) and that upland vegetation responded as fast as aquatic invertebrates. We suggest that the minor climatic changes associated with the Gerzensee and Preboreal oscillations were weakly recorded in the biostratigraphies at the lowland site, but were more distinct at higher altitudes. Individualistic responses of plant and animal species to climatic change may reflect processes in individuals (e.g. productivity and phenology), in populations (e.g. population dynamics), in spatial distributions (e.g. migrations), and in ecosystems (e.g. trophic state). We suggest that biotic responses may be telescoped together into relatively short periods (50 to 150 years), perhaps disrupting functional interactions among species and thus destabilising ecosystems.
Resumo:
The ratio of oxygen isotopes is a temperature proxy both in precipitation and in the calcite of lacustrine sediments. The very similar oxygen-isotope records from Greenland ice cores and European lake sediments during the Last Glacial Termination suggest that the drastic climatic changes occurred quasi-simultaneously on an extra-regional, probably hemispheric scale. In order to study temporal relations of the different parameters recorded in lake sediments, for example biotic response times to rapid climatic changes, a precise chronology is required. In unlaminated lake sediments there is not yet available a method to provide a high-resolution chronology, especially for periods with radiocarbon plateaux. Alternatively, an indirect time scale can be constructed by linking the lake stratigraphy with other well-dated climate records. New oxygen-isotope records from Gerzensee and Leysin, with an estimated sampling resolution of between 15 and 40 years, match the Greenlandic isotope record in many details. Under the assumption that the main variations in temperature and thus in oxygen isotopes occurred about simultaneously in Greenland and Switzerland, we have assigned a time scale to the lake sediments of Gerzensee and Leysin by wiggle-matching their stable-isotope records with those of Greenland ice cores, which are among the best dated climatic archives. We estimate a precision of 20 to 100 years during the Last Glacial Termination.
Resumo:
Plant macrofossils from the end of the Younger Dryas were analysed at three sites, Gerzensee (603 m asl), Leysin (1230 m asl), and Zeneggen (1510 m asl). For the first two sites an oxygen-isotope record is also available that was used to develop a time scale (Schwander et al., this volume); dates refer therefore to calibrated years according to the GRIP time scale. Around Gerzensee a pine forest with some tree birches grew during the Younger Dryas. With the onset of the isotopic shift initiating the rapid warming (about 11,535 cal. years before 1950), the pine forest became more productive and denser. At Leysin no trees except some juniper scrub grew during the Younger Dryas. Tree birches, pine, and poplar immigrated from lower altitudes and arrived after the end of the isotopic shift (about 11,487 B.P.), i.e., at the beginning of the Preboreal (at about 11,420 B.P.). Zeneggen is situated somewhat higher than Leysin, but single tree birches and pines survived the Younger Dryas at the site. At the beginning of the Preboreal their productivity and population densities increased. Simultaneously shifts from Nitella to Chara and from silt to gyttja are recorded, all indicating rapidly warming conditions and higher nutrient levels of the lake water (and probably of the soils in the catchment). At Gerzensee the beginning of the Younger Dryas was also analysed: the beginning of the isotopic shift correlates within one sample (about 15 years) to rapid decreases of macrofossils of pines and tree birches.
Resumo:
Oxygen- and carbon-isotope ratios in the carbonate of benthic ostracodes (Pseudocandona marchica) and molluscs (Pisidium ssp.) were measured across the transitions bordering the Younger Dryas chronozone in littoral lacustrine cores from Gerzensee (Switzerland). The specific biogenic carbonate records confirm the major shifts already visible in the continuous bulk-carbonate oxygen-isotope record (δ18OCc). If corrected for their vital offsets, oxygen-isotope ratios of Pisidium and juvenile P. marchica, both formed in summer, are almost identical to δ18OCc. This bulk carbonate is mainly composed of encrustations of benthic macrophythes (Chara ssp.), also mainly produced during summer. Adult P. marchica, which calcify in winter, show consistently higher δ18O, larger shifts across both transitions, and short positive excursions compared with the summer forms, especially during early Preboreal. Despite such complexity, the δ18O of adult P. marchica probably reflects more accurately the variations of the δ18O of former lake water because, during winter, calcification temperatures are less variable and the water column isotopically uniform. The difference between normalised δ18O of calcite precipitated in winter to that formed in summer can be used to estimate the minimum difference between summer and winter water temperatures. In general, the results indicate warmer summers during the late Allerød and early Preboreal compared with the Younger Dryas. Altogether, the isotopic composition of lake water (δ18OL) and of the dissolved inorganic carbonate (δ13CDIC) reconstructed from adult Pseudocandona marchica, as well as the seasonal water temperature contrasts, indicate that the major shifts in the δ18O of local precipitation at Gerzensee were augmented by changes of the lake's water balance, with relatively higher evaporative loss occurring during the Allerød compared with the Younger Dryas. It is possible that during the early Preboreal the lake might even have been hydrologically closed for a short period. We speculate that such hydrologic changes reflect a combination of varying evapotranspiration and a rearrangement of groundwater recharge during those climatic shifts.
Resumo:
Mass accumulation rates (MAR) of different components of North Pacific deep-sea sediment provide detailed information about the timing of the onset of major Northern Hemisphere glaciation that occurred at 2.65 Ma. An increase in explosive volcanism in the Kamchatka-Kurile and Aleutian arcs occured at this same time, suggesting a link between volcanism and glaciation. Sediments recovered by piston-coring techniques during ODP Leg 145 provide a unique opportunity to undertake a detailed test of this possibility. Here we use volcanic glass as a proxy for explosive volcanism and ice-rafted debris (IRD) as a proxy for glaciation. The MAR of both glass and IRD increase markedly at 2.65 Ma. Further, the flux of the volcanic glass increased just prior the flix of ice-radted material, suggesting that the cooling resulting from explosive volcanic eruptions may have been the ultimate trigger for the mid-Pliocene glacial intensification.
Resumo:
Radiocarbon-dated pollen, rhizopod, chironomid and total organic carbon (TOC) records from Nikolay Lake (73°20'N, 124°12'E) and a pollen record from a nearby peat sequence are used for a detailed environmental reconstruction of the Holocene in the Lena Delta area. Shrubby Alnus fruticosa and Betula exilis tundra existed during 10,300-4800 cal. yr BP and gradually disappeared after that time. Climate reconstructions based on the pollen and chironomid records suggest that the climate during ca. 10,300-9200 cal. yr BP was up to 2-3 °C warmer than the present day. Pollen-based reconstructions show that the climate was relatively warm during 9200-6000 cal. yr BP and rather unstable between ca. 5800-3700 cal. yr BP. Both the qualitative interpretation of pollen data and the results of quantitative reconstruction indicate that climate and vegetation became similar to modern-day conditions after ca. 3600 cal. yr BP. The chironomid-based temperature reconstruction suggests a relatively warm period between ca. 2300 and 1400 cal. yr BP, which corresponds to the slightly warmer climate conditions reconstructed from the pollen. Modern chironomid and rhizopod assemblages were established after ca. 1400 cal. yr BP.
Resumo:
In an attempt to document the palaeoecological affinities of individual extant and extinct dinoflagellate cysts, Late Pliocene and Early Pleistocene dinoflagellate cyst assemblages have been compared with geochemical data from the same samples. Mg/Ca ratios of Globigerina bulloides were measured to estimate the spring-summer sea-surface temperatures from four North Atlantic IODP/DSDP sites. Currently, our Pliocene-Pleistocene database contains 204 dinoflagellate cyst samples calibrated to geochemical data. This palaeo-database is compared with modern North Atlantic and global datasets. The focus lies in the quantitative relationship between Mg/Ca-based (i.e. spring-summer) sea-surface temperature (SSTMg/Ca) and dinoflagellate cyst distributions. In general, extant species are shown to have comparable spring-summer SST ranges in the past and today, demonstrating that our new approach is valid for inferring spring-summer SST ranges for extinct species. For example, Habibacysta tectata represents SSTMg/Ca values between 10° and 15°C when it exceeds 30% of the assemblage, and Invertocysta lacrymosa exceeds 15% when SSTMg/Ca values are between 18.6° and 23.5°C. However, comparing Pliocene and Pleistocene SSTMg/Ca values with present day summer values for the extant Impagidinium pallidum suggests a greater tolerance of higher temperatures in the past. This species occupies more than 5% of the assemblage at SSTMg/Ca values of 11.6-17.9°C in the Pliocene and Pleistocene, whereas present day summer SSTs are around -1.7 to 6.9°C. This observation questions the value of Impagidinium pallidum as reliable indicator of cold waters in older deposits, and may explain its bipolar distribution.