999 resultados para pH concentration
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Na agricultura familiar na Amazônia oriental, em particular no nordeste do Pará, são comuns os cultivos semi-perenes com pesada aplicação de agrotóxicos. Em virtude da ampla utilização desses produtos, principalmente o dimetoato, na microbacia hidrográfica do igarapé Cumaru, município de Igarapé-Açu (PA), foi avaliada a retenção dessa substância em amostras da zona não-saturada em laboratório, verificando-se também a influência do pH e dos teores de argila e de matéria orgânica nesse processo. Entre os diversos agrotóxicos utilizados na área, o dimetoato foi selecionado por apresentar maior potencial de lixiviação, segundo o índice GUS (Groundwater Ubiquity Score). Para a quantificação da retenção do dimetoato nos sedimentos da zona não-saturada foi realizado um experimento de sorção. Este último mostrou que, em termos percentuais, a sorção do dimetoato variou de 2.5% a 36.2% (concentração inicial 20 mg.-1) e de 6.20% a 31.0 % (concentração inicial 10 mg. -1). Esses dados comprovam o elevado potencial de contaminação da água subterrânea por essa substância, devido, principalmente, à sua mobilidade e baixa retenção. Devido ao caráter hidrofóbico do dimetoato, que aumenta a sua afinidade com a matéria orgânica, a quantidade sorvida dessa substância se mostrou diretamente proporcional à de matéria orgânica presente nos sedimentos. O pH exerce efeito contrário a este, ou seja, quanto mais elevado o seu valor, menor é a quantidade de dimetoato sorvida. Em relação à variação do teor e ao tipo de argila, foi observado que esses fatores não influenciam na retenção do dimetoato, sendo esse resultado atribuído ao comportamento não iônico desse agrotóxico.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The pH values near a planar dissociating membrane are studied under a mean field approximation using the Poisson-Boltzmann equation and its linear form. The equations are solved in planar symmetry with the consideration that the charge density on the dissociating membrane surface results from an equilibrium process with the neighboring electrolyte. Results for the membrane dissociation degree are presented as a function of the electrolyte ionic strength and membrane surface charge density. Our calculations indicate that pH values have an appreciable variation within 2 nm from the membrane. It is shown that the dissociation process is enhanced due to the presence of bivalent ions and that pH values acquire better stability than in an electrolyte containing univalent ions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The intense valuation of an esthetic pleasant smile guided the dentistry to bleached tooth due the popularity of whitening treatments. The consequence of it is an increasing interest in searching the effect of peroxides in hard dental tissues. The aim of this work was to analyze qualitatively in vitro the human enamel after three different bleaching treatments: Opalescence PF 10%, White Class 7.5% and Opalescence Xtra Boost 38%, correlating the structural changes in the surface of the enamel with its respective pH. A total of 40 sound human pre-molars were randomly divided into four groups of 10 elements, which had been immersed in artificial saliva during all the experiment. Bleaching protocols followed the recommendations of the respective manufacturers. Each bleached sample and control group were submitted to a scanning electronic microscopy analysis and compared with one another. Bleaching agents used in this experiment had modified the morphologic aspect of the surface of the dental enamel; however, it did not have correlation between the degrees of severity of the alterations and pH. There is a correlation between hydrogen peroxide concentration and changes in the enamel, where G4 showed more severe alterations, followed for G3 and G2.
Resumo:
Purpose: To evaluate the effects of coronal leakage on concentration of hydrogen ions (pH) and calcium release of several calcium hydroxide pastes, over different periods of time. Material and Methods: Fifty extracted human mandibular central incisors (n=10) were instrumented up to the F2 instrument and assigned to the following intracanal dressing: G1- Calen, G2- Calen with 0.4% chlorhexidine (CHX), G3- Calcium hydroxide with camphorated paramonochlorophenol (CPMC) and glycerin, G4- Calen, but temporary filling material maintained during all test (positive control) and G5- Root canal without intracanal dressing (negative control). All groups were immersed in distilled water for 7 days. In sequence, the temporary filling materials were removed, except in controls groups. All specimens were individually mounted on a specific device and only its root again immersed in distilled water. Concentration of hydrogen ions and calcium release by calcium hydroxide pastes in distilled water were evaluated in 24h, 7, 14 and 28 days. The results were submitted to ANOVA test (p = 0.05). After 28 days, root canals from experimental groups were examined in SEM. Results: G1, G2, G3 and G4 presented similar pH values and calcium release and did not differ from each other (p>0.05), up to 7 days. After this time G1, G2 and G3 presented values lower values than G4 (p<0.05). In SEM analysis, calcium hydroxide residues were observed in all experimental groups. Conclusions: After 7 days, coronal leakage decreased the concentration of hydrogen ions and calcium ion release provided by all calcium hydroxide pastes.
Resumo:
Objetives: The aim of this study was to verify the anticariogenic effect of acidulate solutions with low NaF concentration, using pH-cycling model and bovine enamel. Material and Methods: Enamel blocks were submitted to the surface microhardness (SMH) test and randomly divided in 12 experimental and one placebo groups. The blocks were submitted to pH cycling for 7 days, with daily applications once/day of 0.05% NaF and 0.1% NaF and twice/day of 0.02% NaF solutions. Four different pH: 4.0, 5.0, 6.0 and 7.0 were used. Next, SMH test was again used to determine the surface microhardness percentage change (%SMH). Data obtained for %SMH were homogeneous and passed through variance analyses and Tukey's test (5%) as far as fluoride concentrations and pH. Results: The results showed that pH influenced %SMH in 0.02% NaF and 0.05% NaF solutions with pH 4.0, which had less mineral loss compared to pH 7.0 (p<0.05). The 0.02% NaF - pH 4.0, and 0.05% NaF – pH 7.0 groups showed similar results (p>0.05). A dose-response relationship was observed among the tested solutions, with better anticariogenic effect for the 0.1% NaF solution. Conclusion: The results suggest that the addition of citric acid to acidulate mouth rinses reduce mineral loss.
Resumo:
Small-angle X-ray scattering (SAXS) was used to study structural characteristics of human serum albumin (HSA) in solution under different pH conditions. Guinier analysis of SAXS results yielded values of the molecular radius of gyration ranging from 26.7 Å to 34.5 Å for pH varying from 2.5 to 7.0. This suggests the existence of significant differences in the overall shape of the molecule at different pH. Molecular models based on subdomains with different spatial configurations were proposed. The distance distribution functions associated with these models were calculated and compared with those determined from the experimental SAXS intensity functions. The conclusion of this SAXS study is that the arrangement of molecular subdomains is clearly pH dependent; the molecule adopting more or less compact configuration for different pH conditions. The conclusions of this systematic study on the modification in molecular shape of HSA as a response to pH changes is consistent with those of previous investigations performed for particular pH conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)