962 resultados para oxygen content
Resumo:
The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.
Resumo:
Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.
Resumo:
Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.
Resumo:
The maintenance of adequate dissolved oxygen level is very important in the economy of any aquaculture system. An easy to construct aerating device was created using 0.5 hp water-pump, shower rose, Styrofoam, and rubber hose. The aerator works by drawing water from below and discharging it into the atmosphere as a spray. The spray is aerated as it splashes into the water surface. The aerating device has an average spray of 1.2 unit and doubles the dissolved oxygen content of 37.8 m super(3) tank in one hour
Resumo:
In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. By varying the exposure time of these treatments the surface concentration of oxygenated groups adsorbed on the CNT arrays can be controlled. CNT arrays with very low amount of oxygenated groups exhibit a superhydrophobic behavior. In addition to their extremely high static contact angle, they cannot be dispersed in DI water and their impedance in aqueous electrolytes is extremely high. These arrays have an extreme water repellency capability such that a water droplet will bounce off of their surface upon impact and a thin film of air is formed on their surface as they are immersed in a deep pool of water. In contrast, CNT arrays with very high surface concentration of oxygenated functional groups exhibit an extreme hydrophilic behavior. In addition to their extremely low static contact angle, they can be dispersed easily in DI water and their impedance in aqueous electrolytes is tremendously low. Since the bulk structure of the CNT arrays are preserved during the UV/ozone, oxygen plasma, and vacuum annealing treatments, all CNT arrays can be repeatedly switched between superhydrophilic and superhydrophobic, as long as their O/C ratio is kept below 18%.
The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network.
The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here.
Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance.
Resumo:
Parasitic and infectious diseases of fish, of wide distribution in fish-rearing ponds, retard to a significant extent the development of fish culture in the Ukraine. One of the diseases of fish attracting attention in connection with the general distribution of its causative agent, the fungus Saprolegnia parasitica Coker, in water-bodies of various types, appears to be dermatomycosis. The aim of this investigation is to study the conditions favouring the development of S. parasitica. Among the studied factors were water temperature and oxygen content.
Resumo:
The present paper deals with the variations of the dissolved oxygen content off Grand Bassam (11 miles east of Abidjan, Côte d'Ivoire), during nearly five years (March 1966 to September 1970). Although we find in general the low oxygen values near the bottom, the dissolved oxygen content is at its absolute minimum during the upwelling. There is a good correlation between the Secchi depth and the depth of the well ventilated layer. About 10% of surface irradiance is found at the layer where the dissolved oxygen content equals 80% of the oxygen content found at surface.
Resumo:
A pirólise rápida é um processo para conversão térmica de uma biomassa sólida em altos rendimentos de um produto líquido chamado de bio-óleo. Uma das alternativas para geração de um bio-óleo com menor teor de oxigênio é uso de catalisadores nos reatores de pirólise, ao invés de um inerte, num processo chamado de pirólise catalítica. O objetivo deste trabalho foi testar catalisadores comerciais, um ácido e outro básico, em uma unidade piloto de leito fluidizado circulante. O catalisador ácido utilizado foi o Ecat, proveniente de uma unidade industrial de craqueamento catalítico fluido (FCC), e como catalisador básico foi utilizado uma hidrotalcita. Os resultados foram comparados com testes utilizando um material inerte, no caso uma sílica. Uma unidade piloto de FCC do CENPES foi adaptada para realizar os testes de pirólise catalítica. Após fase de modificação e testes de condicionamento, foi comprovada a viabilidade na utilização da unidade piloto adaptada. Contudo, devido a limitações operacionais, maiores tempos de residência tiveram que ser aplicados no reator, configurando o processo como pirólise intermediária. Foram então realizados testes com os três materiais nas temperaturas de 450C e 550C. Os resultados mostraram que o aumento do tempo de residência dos vapores de pirólise teve um impacto significativo nos rendimentos dos produtos quando comparada com o perfil encontrado na literatura para pirólise rápida, pois devido ao incremento das reações secundárias, produziu maiores rendimentos de coque e água, e menores rendimentos de bio-óleo. O Ecat e a hidrotalcita se apresentaram mais efetivos em termos de desoxigenação. O primeiro apresentou maiores taxas de desoxigenação via desidratação e a hidrotalcita apresentou maior capacidade para descarboxilação. Contudo, o uso de Ecat e hidrotalcita não se mostrou adequado para uso em reatores de pirólise intermediária, pois acentuou ainda mais as reações secundárias, gerando um produto com alto teor de água e baixo teor de compostos orgânicos no bio-óleo, além de produzirem mais coque. À temperatura de 450C estes efeitos foram mais pronunciados. Em termos de caracterização química, a condição de pirólise intermediária apontou para a produção de bio-óleos com perfil fenólico, sendo a sílica o que proporcionou os melhores rendimentos, principalmente a temperatura de 550C, sendo superiores aos encontrados na literatura. Analisando as composições dos bio-óleos sob a ótica da produção de biocombustíveis, nenhum dos materiais testados apresentou rendimentos consideráveis em hidrocarbonetos. De maneira geral, a sílica foi o que proporcionou os melhores resultados em termos de rendimento e qualidade do bio-óleo. Sua menor área superficial e sua característica de inerte se mostraram mais adequados para o processo de pirólise intermediária, onde a contribuição das reações secundárias em fase gasosa é elevada em função do tempo de residência no reator
Resumo:
CMOS nanocrystalline silicon thin film transistors with high field effect mobility are reported. The transistors were directly deposited by radio-frequency plasma enhanced chemical vapor deposition at 150°C The transistors show maximum field effect mobility of 450 cm2/V-s for electrons and 100 cm2/V-s for holes at room temperature. We attribute the high mobilities to a reduction of the oxygen content, which acts as an accidental donor. Indeed, secondary ion mass spectrometry measurements show that the impurity concentration in the nanocrystalline Si layer is comparable to, or lower than, the defect density in the material, which is already low thanks to hydrogen passivation.
Resumo:
The paper deals with a technique to synchronize two crops, fish and makhana (Euryale ferox Salisb) in a pond. In such eco-friendly integration both crops are mutually benefited. Decomposed plant parts of makhana crop form organic matter that releases nutrients in the water to enhance plankton population. Organic detritus not only acts as food for bottom dwelling fishes (mrigal and common carp) but also provides a suitable substratum for the growth of zooplankton, insect larvae, nematodes and gastropods. Fishes contribute to the control of makhana pests. Their faecal matter acts as organic manure for makhana crop. Plankton population fluctuated between 1260 u/l to 4030 u/l in the control pond and 1630 u/l to 4722 u/l in the experimental pond. During the grand growth period of makhana crop (April to July) the dissolved oxygen content fluctuated between 5.02 mg/l to 6.68 mg/l in the covered areas and 6.04 mg/l to 6.92 mg/l in uncovered areas. Makhana leaves acting as blanket barrier over the water surface brought down the D.O. content in the covered areas of the pond. Free CO sub(2) content showed wider fluctuation in the experimental pond (25.2 mg/l to 30.9 mg/l) than in the control pond (25.1 mg/l to 28.6 mg/l). This could be due to decomposition of plant parts of the presiding crop lying as debris at the pond bottom. Autochthonous supply of nutrients enhanced the content of nitrogen, phosphorous and organic carbon in the soil of experimental pond. The experimental pond covering an area of 0.40 ha yielded 852 kg fish and 200 kg pops whereas the control pond covering the same area produced 777 kg fish only. The net profit per ha came out to be Rs.1,04,700 and Rs. 66,200 in integrated and non-integrated system respectively. Owing to crop diversification, the present integrated system was found to be more viable than the non-integrated system in terms of production and net profit.
Resumo:
Postlarvae of tiger prawns, P. monodon , were fed with various protein levels of 0; 30; 40 and 50%, fish meal and rice bran were combined and pelletized for 16 wks. Prawns used had an average mean length of 1.2 mm and an average mean weight of 5.5 mg. Nitrite, ammonia, dissolved oxygen content, temperature and pH were monitored. After one month of feeding, growth increments of postlarvae fed with 30% protein diet were significantly different from those given 0; 40 and 50%. Survival rate of the group fed 40% protein was higher (81.7%) but was not significantly different from those fed 30% (68.0%). The highest feed efficiency was obtained from the 30% protein pellets (4.6). At the end of 16 weeks, growth increment of 40% protein level was significantly different from the 30% and 50% protein levels, but the survival rate was not signficantly different from the 30% protein level. Feed conversion for the 40% protein diet was 2.8.
Resumo:
Postlarvae of tiger prawns, P. monodon, were fed with various protein levels of 0; 30; 40 and 50%, fish meal and rice bran were combined and pelletized for 16 wks. Prawns used had an average mean length of 1.2 mm and an average mean weight of 5.5 mg. Nitrite, ammonia, dissolved oxygen content, temperature and pH were monitored. After one month of feeding, growth increments of postlarvae fed with 30% protein diet were significantly different from those given 0; 40 and 50%. Survival rate of the group fed 40% protein was higher (81.7%) but was not significantly different from those fed 30% (68.0%). The highest feed efficiency was obtained from the 30% protein pellets (4.6). At the end of 16 weeks, growth increment of 40% protein level was significantly different from the 30% and 50% protein levels, but the survival rate was not significantly different from the 30% protein level. Feed conversion for the 40% protein diet was 2.8.
Resumo:
Composite AlN powder, mixed with the sintering additive Y2O3, was synthesized by the direct nitridation of molten Al-Mg-Y alloys. The character of products was determined by means of electron microscopy, X-ray diffraction, granularmetric analysis and chemical composition analysis etc. The results show that the nitridation rate of the raw alloys is higher, and the nitridation products axe porous enough to be easily crushed. Composite AlN powder, obtained by the Lanxide method, has excellent characters such as high purity, especially low oxygen content, and narrow well-distributed grain size and so on.
Resumo:
Nanocomposite films consisting of nanosized Ag particles embedded in partially oxidized amorphous Si-containing matrices were prepared by radio frequency magnetron co-sputtering deposition. We studied the influence of ambient atmosphere during the preparation and heat-treatment of Ag/SiOx (0 less than or equal to x less than or equal to 2) nanocompositefilm on its optical absorption properties. We found that the plasmon resonance absorption peak shifts to shorter wavelengths with the increasing oxygen content in the SiOx matrix. The analysis indicates that the potential barrier between Ag nanoparticles and SiOx matrix increases with the increasing x value, which will induce the surface resonance state to shift to higher energy. The electrons in the vicinity of the Fermi level of Ag nanoparticles must absorb more energy to be transferred to the surface resonance state with the increasing x value. It was also found that the plasmon resonance absorption peaks of the samples annealed in different ambient atmospheres are located at about the same position. This is because the oxidation surface layer is dense enough to prevent the oxygen from penetrating into the sample to oxidize the silicon in the inner layer.
Resumo:
AIN powders were prepared by in-situ synthesis technique. It is a reaction of binary molten Al-Mg alloys with highly pure nitrogen. It was confirmed through thermodynamics calculation that Mg element in Al-Mg alloys can decrease oxygen content in the reacting system. Thus, nitridation reaction can be performed to form AIN. Moreover, an analysis of kinetics shows that the nitridation reaction of Al-Mg alloys can be accelerated and transferred rapidly with the increment of Mg content.