980 resultados para oxidative potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress-activated protein kinases JNK and p38 mediate increased gene expression and are activated by environmental stresses and proinflammatory cytokines. Using an in vivo model in which oxidative stress is generated in the liver by intracellular metabolism, rapid protein–DNA complex formation on stress-activated AP-1 target genes was observed. Analysis of the induced binding complexes indicates that c-fos, c-jun, and ATF-2 were present, but also two additional jun family members, JunB and JunD. Activation of JNK precedes increased AP-1 DNA binding. Furthermore, JunB was shown to be a substrate for JNK, and phosphorylation requires the N-terminal activation domain. Unexpectedly, p38 activity was found to be constitutively active in the liver and was down-regulated through selective dephosphorylation following oxidative stress. One potential mechanism for p38 dephosphorylation is the rapid stress-induced activation of the phosphatase MKP-1, which has high affinity for phosphorylated p38 as a substrate. These data demonstrate that there are mechanisms for independent regulation of the JNK and p38 mitogen-activated protein kinase signal transduction pathways after metabolic oxidative stress in the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (−1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat shock (HS) proteins (HSPs) induce protection against a number of stresses distinct from HS, including reactive oxygen species. In the human premonocytic line U937, we investigated in whole cells the effects of preexposure to HS and exposure to hydrogen peroxide (H2O2) on mitochondrial membrane potential, mass, and ultrastructure. HS prevented H2O2-induced alterations in mitochondrial membrane potential and cristae formation while increasing expression of HSPs and the protein product of bcl-2. Protection correlated best with the expression of the 70-kDa HSP, hsp70. We propose that mitochondria represent a selective target for HS-mediated protection against oxidative injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischaemia-reperfusion and toxic injury are leading causes of acute renal failure (ARF). Both of these injury initiators use secondary mediators of damage in oxygen-derived free radicals. Several recent publications about ischaemia-reperfusion and toxin-induced ARF have indicated that plasma membrane structures called caveolae, and their proteins, the caveolins, are potential participants in protecting or repairing renal tissues. Caveolae and caveolins have previously been ascribed many functions, a number of which may mediate cell death or survival of injured renal cells. This review proposes possible pathophysiological mechanisms by which altered caveolin-1 expression and localization may affect renal cell survival following oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-fetoprotein (AFP) is a commercially important polypeptide with important diagnostic. physiological and immunomodulatory functions. Previous studies into the refolding of this macromolecule are contradictory. and variously suggest that AFP denaturation may be irreversible or that refolding may be achieved by reducing denaturant concentration through dilution but not dialysis. Importantly, these same previous studies do not provide quantitative metrics by which the Success of refolding, and the potential for bioprocess development. can be assessed. Moreover, these same studies do not optimize and control refolding redox potential - an important factor considering that AFP contains 32 cysteines which form 16 disulfide bonds. In this current study, a quantitative comparison of recombinant human AFP (rhAFP) refolding by dilution and dialysis is conducted under optimized redox conditions. rhAFP refolding yields were > 35% (dialysis refolding) and > 75% (dilution refolding) as assessed by RP-HPLC and ELISA, with structural Similarity to the native state confirmed by UV spectroscopy. Dialysis refolding yield was believed to be lower because the gradual reduction in denaturant concentration allowed extended conformational searching. enabling more time for undesirable interaction with other protein molecules and/or the dialysis membrane, leading to a Sub-optimal process outcome. Significant yield sensitivity to redox environment was also observed, emphasizing the importance of physicochemical optimization. This study demonstrates that very high refolding yields can be obtained, for a physiologically relevant protein, with optimized dilution refolding. The study also highlights the quantitative metrics and macromolecular physical spectroscopic 'fingerprints' required to facilitate transition from laboratory to process scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glyoxal, a reactive aldehyde, is a decomposition product of lipid hydroperoxides, oxidative deoxyribose breakdown, or autoxidation of sugars, such as glucose. It readily forms DNA adducts, generating potential carcinogens such as glyoxalated deoxycytidine (gdC). A major drawback in assessing gdC formation in cellular DNA has been methodologic sensitivity. We have developed an mAb that specifically recognizes gdC. Balb/c mice were immunized with DNA, oxidatively modified by UVC/hydrogen peroxide in the presence of endogenous metal ions. Although UVC is not normally considered an oxidizing agent, a UVC/hydrogen peroxide combination may lead to glyoxalated bases arising from hydroxyl radical damage to deoxyribose. This damaging system was used to induce numerous oxidative lesions including glyoxal DNA modifications, from which resulted a number of clones. Clone F3/9/H2/G5 showed increased reactivity toward glyoxal-modified DNA greater than that of the immunizing antigen. ELISA unequivocally showed Ab recognition toward gdC, which was confirmed by gas chromatography-mass spectrometry of the derivatized adduct after formic acid hydrolysis to the modified base. Binding of Ab F3/9 with glyoxalated and untreated oligomers containing deoxycytidine, deoxyguanosine, thymidine, and deoxyadenosine assessed by ELISA produced significant recognition (p 0.0001) of glyoxal-modified deoxycytidine greater than that of untreated oligomer. Additionally, inhibition ELISA studies using the glyoxalated and native deoxycytidine oligomer showed increased recognition for gdC with more than a 5-fold difference in IC50 values. DNA modified with increasing levels of iron (II)/EDTA produced a dose-dependent increase in Ab F3/9 binding. This was reduced in the presence of catalase or aminoguanidine. We have validated the potential of gdC as a marker of oxidative DNA damage and showed negligible cross-reactivity with 8-oxo-2'-deoxyguanosine or malondialdehyde-modified DNA as well as its utility in immunocytochemistry. Formation of the gdC adduct may involve intermediate structures; however, our results strongly suggest Ab F3/9 has major specificity for the predominant product, 5-hydroxyacetyl-dC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quercetin is a naturally occurring polyphenol compound present in grapes, red wine, tea, apples and some vegetables. Like other flavonoids, it has been found to have antioxidant activity in studies in vitro, although there is still much debate about the bioavailability of flavonoids in the diet and their in vivo antioxidant activity. In general, it is thought that the antioxidant efficiency of polyphenols increases with increasing hydroxylation of the rings, but there have been few studies of other substitutions. We have prepared several derivatives of quercetin, to test the effect of modification on their antioxidant potential. Sodium salts of quercetin-5-sulfonate and quercetin-5,8-sulfonate, and transition metal complexes of quercetin-5-sulfonate were analysed for their total antioxidant potential using the FRAP assay, and compared to unmodified quercetin. It was found that quercetin-5-sulfonate complexes with Zn, Cu(II), Fe(II) and Mg were all significantly better antioxidants than quercetin, quercetin-5-sulfonate was comparable to quercetin, whereas the sodium salt of quercetin-5,8-sulfonate had a decreased total antioxidant potential. Kinetic studies of the FRAP reaction showed no significant differences between quercitin and any of the derivatives. The reaction of all the quercetins in the FRAP assay was found to be slower to reach completion than ascorbate, and appeared to have biphasic characteristics. These results suggest that transition metal ions may facilitate the transfer of electrons from the polyphenol ring system to the oxidant, while substitution with S03 is electron-withdrawing and destabilizes the ring system. This is important both for understanding the antioxidant ability of flavonoids, and for the design of novel antioxidant compounds. Further work is being carried out to assess the ability of the quercetin complexes to protect cultured cells from oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The review deals with impairment of Ca2+-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca2+-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca2+-ATPase structure and function contributing to Ca2+ imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca2+-pump glycation, and their advantages and disadvantages are discussed. © 2013 Informa UK, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Berries contain several bioactive compounds that can protect against oxidative stress. In this study we evaluated the protective effect of different sequential extracts (ethyl acetate, ethanol and water) of seven berry species: bilberry (Vaccinium myrtillus), blackcurrant (Ribes nigrum), elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea), rose hips (Rosa sp.), sea buckthorn (Hippohae rhamnoides) and strawberry (Fragaria × ananassa). The protective effect was tested on human erythrocytes and the antioxidant capacity was also evaluated in vitro by the FRAP assay. In the erythrocyte assay all sea buckthorn extracts were superior in antioxidant effect to other berry extracts. The ethyl acetate extract of bilberries, and the ethanol and water extracts of blackcurrants, also protected the erythrocytes from oxidation. In contrast, water extracts of rose hips, bilberries and strawberries had a pro-oxidant effect on erythrocytes. The water extract of rose hips was superior to the other berry extracts in the FRAP assay. Thus, the results of the erythrocyte assay did not correlate with the results of the FRAP assay, but provided additional insights into the potential protective effects of berry extracts against oxidative stress. © 2012 - IOS Press and the authors. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074 Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50 degrees C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative damage has been proposed as a potential mechanism underlying a life history tradeoff between survival and reproduction. However, evidence that reproduction is associated with increased oxidative damage is equivocal, and some studies have found that breeding females exhibit reduced, rather than elevated, levels of oxidative damage compared to equivalent non-breeders. Recently it was hypothesized that oxidative damage could have negative impacts on developing offspring, and that mothers might down-regulate oxidative damage during reproduction to shield their offspring from such damage. We tested this hypothesis through a longitudinal study of adult survival, reproduction, and oxidative damage in wild banded mongooses (Mungos mungo) in Uganda. High levels of oxidative damage as measured by malondialdehyde (MDA) were associated with reduced survival in both sexes. Levels of protein carbonyls were not linked to survival. Mothers showed reduced levels of MDA during pregnancy, and individuals with higher MDA levels gestated fewer offspring and had lower pup survival. These results suggest that maternal oxidative damage has transgenerational costs, and are consistent with the idea that mothers may attempt to shield their offspring from particularly harmful types of oxidative damage during pregnancy. We suggest that further advance in understanding of life history variation could benefit from theoretical and empirical exploration of the potential transgenerational costs of reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.