681 resultados para orthopaedic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of chondrogenic cells available locally is an, important factor in the repair process for cartilage defects. Previous studies demonstrated that the number of transplanted rabbit perichondrial cells (PC) remaining in a cartilage defect in vivo, after being carried into the site in a polylactic acid (PLA) scaffold, declined markedly within two days. This study examined the ability of in vitro culture of PC/PLA constructs to enhance subsequent biomechanical stability of the cells and the matrix content in an in vitro screening assay. PC/PLA constructs were analyzed after 1 h, 1 and 2 weeks of culture. The biomechanical adherence of PC to the PLA scaffold was tested by subjecting the PC/PLA constructs to a range of flow velocities (0.25-25 mm/s), spanning the range estimated to occur under conditions of construct insertion in vivo. The adhesion of PC to the PLA carrier was increased significantly by 1 and 2 weeks of incubation, with 25 mm/s flow causing a 57% detachment of cells after 1 h of seeding, but only 7% and 16% after I and 2 weeks of culture, respectively (p < 0.001). This adherence was associated with marked deposition of glycosaminoglycan and collagen. These findings suggest that pre-incubation of PC-laden PLA scaffolds markedly enhances the stability of the indwelling cells. (C) 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background There is little scientific evidence to support the usual practice of providing outpatient rehabilitation to patients undergoing total knee replacement surgery (TKR) immediately after discharge from the orthopaedic ward. It is hypothesised that the lack of clinical benefit is due to the low exercise intensity tolerated at this time, with patients still recovering from the effects of major orthopaedic surgery. The aim of the proposed clinical trial is to investigate the clinical and cost effectiveness of a novel rehabilitation strategy, consisting of an initial home exercise programme followed, approximately six weeks later, by higher intensity outpatient exercise classes. Methods/Design In this multicentre randomised controlled trial, 600 patients undergoing primary TKR will be recruited at the orthopaedic pre-admission clinic of 10 large public and private hospitals in Australia. There will be no change to the medical or rehabilitative care usually provided while the participant is admitted to the orthopaedic ward. After TKR, but prior to discharge from the orthopaedic ward, participants will be randomised to either the novel rehabilitation strategy or usual rehabilitative care as provided by the hospital or recommended by the orthopaedic surgeon. Outcomes assessments will be conducted at baseline (pre-admission clinic) and at 6 weeks, 6 months and 12 months following randomisation. The primary outcomes will be self-reported knee pain and physical function. Secondary outcomes include quality of life and objective measures of physical performance. Health economic data (health sector and community service utilisation, loss of productivity) will be recorded prospectively by participants in a patient diary. This patient cohort will also be followed-up annually for five years for knee pain, physical function and the need or actual incidence of further joint replacement surgery. Discussion The results of this pragmatic clinical trial can be directly implemented into clinical practice. If beneficial, the novel rehabilitation strategy of utilising outpatient exercise classes during a later rehabilitation phase would provide a feasible and potentially cost-effective intervention to optimise the physical well-being of the large number of people undergoing TKR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem-cell mediated therapies for fracture and other orthopaedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of simulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase (ALP) activity and extracellular matrix mineralization. Furthermore, similar DMSO mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1 we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased ALP activity and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. Flow on knockdown of bone specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.