912 resultados para optimal solution
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e Computadores
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.
Resumo:
Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia
Resumo:
Réalisé en cotutelle avec l'Université Bordeaux 1 (France)
Resumo:
Plusieurs études ont révélé des problèmes récurrents au niveau de la performance et de la gestion des projets de reconstruction à la suite des catastrophes dans les pays en voie de développement (PEVD). Ces projets doivent faire face à des conditions de vulnérabilité des habitants, engendrées par des facteurs politiques, économiques, sociaux et culturels. Les divers participants - contraints par un accès limité à l’information - sont confrontés à travailler dans un contexte hostile ayant un niveau d’incertitude élevé. Ce niveau d’incertitude augmente les risques du projet de reconstruction, particulièrement le risque d’insatisfaction des usagers. Ce travail vise à mettre en parallèle l’analyse du système organisationnel adopté pour la conduite d’un projet de reconstruction et celle du niveau de satisfaction des usagers. Il émet l’hypothèse suivante: deux facteurs organisationnels influencent largement le niveau de satisfaction de la part des bénéficiaires d’un projet de reconstruction de logements à la suite d’un désastre en PEVD: (i) le niveau de centralisation de la prise de décisions (jumelée au manque d’information) au sein de la Multi-Organisation Temporaire (MOT); et (ii) la capacité de la structure organisationnelle de la MOT d’impliquer la participation active des usagers au niveau de la planification, de la gestion, du financement et du design du projet. Afin d’atteindre cet objectif, une recherche empirique fut menée pour analyser le cas des inondations ayant eu lieu en 2003 dans une ville dans la région du Maghreb. Le niveau de satisfaction des usagers a été déterminé grâce à des indicateurs de transfert de technologie qui se basent sur l’analyse du « Cadre Logique » - une méthode d’évaluation largement utilisée dans le domaine du développement international. Les résultats de la recherche ne visent pas à identifier une relation de cause à effet entre les deux variables étudiées (la structure organisationnelle et la satisfaction des usagers). Cependant, ils mettent en évidence certains principes du montage et de la gestion des projets qui peuvent être mis en place pour l’amélioration des pratiques de reconstruction.
Resumo:
La représentation d'une surface, son lissage et son utilisation pour l'identification, la comparaison, la classification, et l'étude des variations de volume, de courbure ou de topologie sont omniprésentes dans l'aire de la numérisation. Parmi les méthodes mathématiques, nous avons retenu les transformations difféomorphiques d'un pattern de référence. Il y a un grand intérêt théorique et numérique à approcher un difféomorphisme arbitraire par des difféomorphismes engendrés par des champs de vitesses. Sur le plan théorique la question est : "est-ce que le sous-groupe de difféomorphismes engendrés par des champs de vitesses est dense dans le groupe plus large de Micheletti pour la métrique de Courant ?" Malgré quelques progrès réalisés ici, cette question demeure ouverte. Les pistes empruntées ont alors convergé vers le sous-groupe de Azencott et de Trouvé et sa métrique dans le cadre de l'imagerie. Elle correspond à une notion de géodésique entre deux difféomorphismes dans leur sous-groupe. L'optimisation est utilisée pour obtenir un système d'équations état adjoint caractérisant la solution optimale du problème d'identification à partir des observations. Cette approche est adaptée à l'identification de surfaces obtenues par un numériseur tel que, par exemple, le scan d'un visage. Ce problème est beaucoup plus difficile que celui d'imagerie. On doit alors introduire un système de référence courbe et une surface à facettes pour les calculs. On donne la formulation du problème d'identification et du calcul du changement de volume par rapport à un scan de référence.
Resumo:
Les gènes sont les parties du génome qui codent pour les protéines. Les gènes d’une ou plusieurs espèces peuvent être regroupés en "familles", en fonction de leur similarité de séquence. Cependant, pour connaître les relations fonctionnelles entre ces copies de gènes, la similarité de séquence ne suffit pas. Pour cela, il est important d’étudier l’évolution d’une famille par duplications et pertes afin de pouvoir distinguer entre gènes orthologues, des copies ayant évolué par spéciation et susceptibles d’avoir conservé une fonction commune, et gènes paralogues, des copies ayant évolué par duplication qui ont probablement développé des nouvelles fonctions. Étant donnée une famille de gènes présents dans n espèces différentes, un arbre de gènes (obtenu par une méthode phylogénétique classique), et un arbre phylogénétique pour les n espèces, la "réconciliation" est l’approche la plus courante permettant d’inférer une histoire d’évolution de cette famille par duplications, spéciations et pertes. Le degré de confiance accordé à l’histoire inférée est directement relié au degré de confiance accordé à l’arbre de gènes lui-même. Il est donc important de disposer d’une méthode préliminaire de correction d’arbres de gènes. Ce travail introduit une méthodologie permettant de "corriger" un arbre de gènes : supprimer le minimum de feuilles "mal placées" afin d’obtenir un arbre dont les sommets de duplications (inférés par la réconciliation) sont tous des sommets de "duplications apparentes" et obtenir ainsi un arbre de gènes en "accord" avec la phylogénie des espèces. J’introduis un algorithme exact pour des arbres d’une certaine classe, et une heuristique pour le cas général.
Resumo:
Les techniques de groupement technologique sont aujourd’hui utilisées dans de nombreux ateliers de fabrication; elles consistent à décomposer les systèmes industriels en sous-systèmes ou cellules constitués de pièces et de machines. Trouver le groupement technologique le plus efficace est formulé en recherche opérationnelle comme un problème de formation de cellules. La résolution de ce problème permet de tirer plusieurs avantages tels que la réduction des stocks et la simplification de la programmation. Plusieurs critères peuvent être définis au niveau des contraintes du problème tel que le flot intercellulaire,l’équilibrage de charges intracellulaires, les coûts de sous-traitance, les coûts de duplication des machines, etc. Le problème de formation de cellules est un problème d'optimisation NP-difficile. Par conséquent les méthodes exactes ne peuvent être utilisées pour résoudre des problèmes de grande dimension dans un délai raisonnable. Par contre des méthodes heuristiques peuvent générer des solutions de qualité inférieure, mais dans un temps d’exécution raisonnable. Dans ce mémoire, nous considérons ce problème dans un contexte bi-objectif spécifié en termes d’un facteur d’autonomie et de l’équilibre de charge entre les cellules. Nous présentons trois types de méthodes métaheuristiques pour sa résolution et nous comparons numériquement ces métaheuristiques. De plus, pour des problèmes de petite dimension qui peuvent être résolus de façon exacte avec CPLEX, nous vérifions que ces métaheuristiques génèrent des solutions optimales.
Resumo:
Les centres d’appels sont des éléments clés de presque n’importe quelle grande organisation. Le problème de gestion du travail a reçu beaucoup d’attention dans la littérature. Une formulation typique se base sur des mesures de performance sur un horizon infini, et le problème d’affectation d’agents est habituellement résolu en combinant des méthodes d’optimisation et de simulation. Dans cette thèse, nous considérons un problème d’affection d’agents pour des centres d’appels soumis a des contraintes en probabilité. Nous introduisons une formulation qui exige que les contraintes de qualité de service (QoS) soient satisfaites avec une forte probabilité, et définissons une approximation de ce problème par moyenne échantillonnale dans un cadre de compétences multiples. Nous établissons la convergence de la solution du problème approximatif vers celle du problème initial quand la taille de l’échantillon croit. Pour le cas particulier où tous les agents ont toutes les compétences (un seul groupe d’agents), nous concevons trois méthodes d’optimisation basées sur la simulation pour le problème de moyenne échantillonnale. Étant donné un niveau initial de personnel, nous augmentons le nombre d’agents pour les périodes où les contraintes sont violées, et nous diminuons le nombre d’agents pour les périodes telles que les contraintes soient toujours satisfaites après cette réduction. Des expériences numériques sont menées sur plusieurs modèles de centre d’appels à faible occupation, au cours desquelles les algorithmes donnent de bonnes solutions, i.e. la plupart des contraintes en probabilité sont satisfaites, et nous ne pouvons pas réduire le personnel dans une période donnée sont introduire de violation de contraintes. Un avantage de ces algorithmes, par rapport à d’autres méthodes, est la facilité d’implémentation.
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.