943 resultados para optimal Jacobian
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.
Resumo:
In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.
Resumo:
In a letter RauA proposed a new method for designing statefeedback controllers using eigenvalue sensitivity matrices. However, there appears to be a conceptual mistake in the procedure, or else it is unduly restricted in its applicability. In particular the equation — BR~lBTK = A/.I, in which K is a positive-definite symmetric matrix.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.
Resumo:
The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.
Resumo:
The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter.
Resumo:
A closed-loop steering logic based on an optimal (2-guidance is developed here. The guidance system drives the satellite launch vehicle along a two- or three- dimensional trajectory for placing the payload into a specified circular orbit. The modified g-guidance algorithm makes use of the optimal required velocity vector, which minimizes the total impulse needed for an equivalent two-impluse transfer from the present state to the final orbit. The required velocity vector is defined as velocity of the vehicle on the hypothetical transfer orbit immediately after the application of the first impulse. For this optimal transfer orbit, a simple and elegant expression for the Q-matrix is derived. A working principle for the guidance algorithm in terms of the major and minor cycles, and also for the generation of the steering command, is outlined.
Resumo:
This paper proposes a novel application of differential evolution to solve a difficult dynamic optimisation or optimal control problem. The miss distance in a missile-target engagement is minimised using differential evolution. The difficulty of solving it by existing conventional techniques in optimal control theory is caused by the nonlinearity of the dynamic constraint equation, inequality constraint on the control input and inequality constraint on another parameter that enters problem indirectly. The optimal control problem of finding the minimum miss distance has an analytical solution subject to several simplifying assumptions. In the approach proposed in this paper, the initial population is generated around the seed value given by this analytical solution. Thereafter, the algorithm progresses to an acceptable final solution within a few generations, satisfying the constraints at every iteration. Since this solution or the control input has to be obtained in real time to be of any use in practice, the feasibility of online implementation is also illustrated.
Resumo:
A new two-stage state feedback control design approach has been developed to monitor the voltage supplied to magnetorheological (MR) dampers for semi-active vibration control of the benchmark highway bridge. The first stage contains a primary controller, which provides the force required to obtain a desired closed-loop response of the system. In the second stage, an optimal dynamic inversion (ODI) approach has been developed to obtain the amount of voltage to be supplied to each of the MR dampers such that it provides the required force prescribed by the primary controller. ODI is formulated by optimization with dynamic inversion, such that an optimal voltage is supplied to each damper in a set. The proposed control design has been simulated for both phase-I and phase-II study of the recently developed benchmark highway bridge problem. The efficiency of the proposed controller is analyzed in terms of the performance indices defined in the benchmark problem definition. Simulation results demonstrate that the proposed approach generally reduces peak response quantities over those obtained from the sample semi-active controller, although some response quantities have been seen to be increasing. Overall, the proposed control approach is quite competitive as compared with the sample semi-active control approach.
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.
Resumo:
A very general and numerically quite robust algorithm has been proposed by Sastry and Gauvrit (1980) for system identification. The present paper takes it up and examines its performance on a real test example. The example considered is the lateral dynamics of an aircraft. This is used as a vehicle for demonstrating the performance of various aspects of the algorithm in several possible modes.
Resumo:
This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.
Resumo:
This paper recasts the multiple data path assignment problem solved by Torng and Wilhelm by the dynamic programming method [1] into a minimal covering problem following a switching theoretic approach. The concept of bus compatibility for the data transfers is used to obtain the various ways of interconnecting the circuit modules with the minimum number of buses that allow concurrent data transfers. These have been called the feasible solutions of the problem. The minimal cost solutions are obtained by assigning weights to the bus-compatible sets present in the feasible solutions. Minimization of the cost of the solution by increasing the number of buses is also discussed.
Resumo:
This paper recasts the multiple data path assignment problem solved by Torng and Wilhelm by the dynamic programming method [1] into a minimal covering problem following a switching theoretic approach. The concept of bus compatibility for the data transfers is used to obtain the various ways of interconnecting the circuit modules with the minimum number of buses that allow concurrent data transfers. These have been called the feasible solutions of the problem. The minimal cost solutions are obtained by assigning weights to the bus-compatible sets present in the feasible solutions. Minimization of the cost of the solution by increasing the number of buses is also discussed.