800 resultados para nucleotides
Resumo:
Three direct repeats of 320, 340 and 238 nucleotides were detected upstream to the 5′ end of the 18S rRNA gene of an rDNA unit present on a 9.8 kb EcoRT fragment of the rice DNA. The primer extension analysis showed that the site of initiation of transcription is in the 1st repeat at an A, the 623rd nucleotide upstream to the 5′ end of the 18S rRNA gene. Different stretches of the intergenic spacer DNA linked to the Chloramphenicol acetyl transferase gene were transcribed in the intact nuclei of rice embryos. The S1 nuclease protection analysis of the transcripts using [32P]-labelled Chloramphenicol acetyl transferase gene as the probe showed the presence of multiple promoters for rDNA transcription.
Resumo:
The 2.3 kb BamHI fragment from the colitis bacteriophage DNA was transcribed and translated into a 20 kd structural protein P6, in a coupled transcription-translation system derived from Escherichia coli. This protein was expressed in vivo by the 2.3 kb DNA cloned in pBR322. The gene with the regulatory elements for this protein was located on the 680 bp AvaII fragment of the insert DNA. It hybridized with two RNAs of sizes 520 and 1630 nucleotides indicating that both are messengers for the 20 kd protein. Dot-blot hybridization showed that the transcripts for P6 reached a maximum level at 12 min after phage infection.
Resumo:
The positive homotropic binding of tetrahydrofolate to monkey liver serine hydroxymethyltransferase was abolished on preincubating the enzyme with NADH and NADPH. NAD+ was a negative heterotropic effector, whereas NADP+ was without effect. The allosteric effects of nicotinamide nucleotides on the serine hydroxymethyltransferase, reported for the first time, lead to a better understanding of the regulation of the metabolic interconversion of folate coenzymes.
Resumo:
Taking advantage of the degeneracy of the genetic code we have developed a novel approach to introduce, within a gene, DNA sequences capable of adopting unusual structures and to investigate the role of such sequences in regulation of gene expression in vivo. We used a computer program that generates alternative codon sequences for the same amino-acid sequence to convert a stretch of nucleotides into an inverted-repeat sequence with the potential to adopt cruciform structure. This approach was used to replace a 51-base-pair EcoRI-HindIII segment in the N-terminal region of the beta-galactosidase gene in plasmid pUC19 with a 51-bp synthetic oligonucleotide sequence with the potential to adopt a cruciform structure with 18 bp in the stem region. In selecting the 51-bp sequence, care was taken to include those codons that are preferred in E. coli. E. coli DH5-alpha cells harbouring the plasmid containing the redesigned sequence showed drastic reduction in expression of the beta-galactosidase gene compared to cells harbouring the plasmid with the native sequence. This approach demonstrates the possibility of introducing DNA secondary-structure elements to alter regulation of gene expression in vivo.
Resumo:
Nucleotide pyrophosphatase of mung bean seedlings has earlier been isolated in our laboratory in a dimeric form (Mr 65,000) and has been shown to be converted to a tetramer by AMP and to a monomer by p-hydroxymercuribenzoate. All the molecular forms were enzymatically active with different kinetic properties. By a modified procedure using blue-Sepharose affinity chromatography, we have now obtained a dimeric form of the enzyme which is desensitized to AMP interaction. The molecular weight of the desensitized form of the enzyme was found to be the same as that of the native dimeric enzyme. However, the desensitized enzyme functioned with a linear time course, contrary to the biphasic time course exhibited by the native enzyme. In addition, it was not converted to a tetramer on the addition of AMP, had only one binding site for adenine nucleotides, and p-hydroxy-mercuribenzoate had no effect on the time course of the reaction or on the molecular weight of the enzyme. The temperature optimum of the desensitized enzyme was found to be 67 °C in contrast to the optimum of 49 °C for the native dimer. Fifty percent of the tryptophan residues of the desensitized enzyme were not accessible for quenching by iodide. Fluorescence studies gave Kd values of 0.34, 2.2, and 0.8 mImage for AMP, ADP, and ATP, which were close to the Ki values of 0.12, 2.2, and 0.9 mImage , respectively, for these nucleotides. The binding and inhibition studies with AMP and its analogs showed that the 6-amino group and the 5′-phosphate group were essential for the inhibition of the enzyme activity.
Resumo:
The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.
Resumo:
The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).
Resumo:
The crystal and molecular structure of sodium deoxyinosine monophosphate (5'-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Aring, b = 9.206(3) Aring and c = 12.770(6) Aring. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2' endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3' atom, a feature observed in many crystal structures of sodium salts of nucleotides.
Resumo:
The preponderance of 3'-5' phosphodiester links in nucleic acids is well known. Albeit less prevalent, the 2'-5' links are specifically utilised in the formation of 'lariat' in group II introns and in the msDNA-RNA junction in myxobacterium. As a sequel to our earlier study on cytidylyl-2',5'-adenosine we have now obtained the crystal structure of adenylyl-2',5'-adenosine (A2'p5'A) at atomic resolution. This dinucleoside monophosphate crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 7.956(3) A, b = 12.212(3) A and c = 36.654(3) A. CuK alpha intensity data were collected on a diffractometer. The structure was sloved by direct methods and refined by full matrix least squares methods to R = 10.8%. The 2' terminal adenine is in the commonly observed anti (chi 2 = 161 degrees) conformation and the 5' terminal base has a syn (chi 1 = 55 degrees) conformation more often seen in purine nucleotides. A noteworthy feature of A2'p5'A is the intranucleotide hydrogen bond between N3 and O5' atoms of the 5' adenine base. The two furanose rings in A2'p5'A show different conformations - C2' endo, C3' endo puckering for the 5' and 2' ends respectively. In this structure too there is a stacking of the purine base on the ribose O4' just as in other 2'-5' dinucleoside structures, a feature characteristically seen in the left handed Z DNA. In having syn, anti conformation about the glycosyl bonds, C2' endo, C3' endo mixed sugar puckering and N3-O5' intramolecular hydrogen bond A2'p5'A resembles its 3'-5' analogue and several other 2'-5' dinucleoside monophosphate structures solved so far. Striking similarities between the 2'-5' dinucleoside monophosphate structures suggest that the conformation of the 5'-end nucleoside dictates the conformation of the 2' end nucleoside. Also, the 2'-5' dimers do not favour formation of miniature classical double helical structures like the 3'-5' dimers. It is conceivable, 2-5(A) could be using the stereochemical features of A2'p5'A which accounts for its higher activity.
Resumo:
The three dimensional structures of 8-bromo 2',3',5' triacetyl adenosine (8-Br Tri A) and 8-bromo 2',3',5'-triacetyl guanosine (8-Br Tri G) have been determined by single crystal X-ray diffraction methods to study the combined effect of bromine and acetyl substitutions on molecular conformation and interactions. The ribose puckers differ from those found in unbrominated Tri A and Tri G and unacetylated 8-Br A and 8-Br G analogues
Resumo:
Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer gamma P-32]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of P-32]-inorganic phosphate ((32)Pi). Inclusion of UDP in the incubation medium resulted in conversion of gamma P-32]ATP to P-32]UTP, while inclusion of AMP resulted in conversion of gamma P-32]ATP to P-32]ADP. Ebselen markedly reduced P-32]UTP formation but displayed negligible effect on (32)Pi or P-32]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC50=6.9 +/- 2 mu M). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V-max of the reaction (K-i=7.6 +/- 3 mu M), having negligible effect on KM values. Our study demonstrates that ebselen is a potent noncompetitive inhibitor of extracellular NDPK.
Resumo:
The conformation of 5-bromocytidine 5'-monophosphate in the title compound, Na+.C9H11BrN3O8P-.1.25H2O, is anti, C(3')-endo and gauche-gauche, similar to that in analogous non-halogenated nucleosides/nucleotides. The Na ion coordinates directly with phosphate O atoms and base atoms. Br is not involved in any stacking interaction.
Resumo:
2',3'-cyclic nucleotides are intermediates and substrates of Ribonuclease (RNase)-catalysed reactions. The characterization of the equilibrium conformation as well as the flexibility inherent in these molecules helps in understanding the enzymatic action of RNases. The present study explores parameters like phase angle, glycosydic torsion angle and hydrogen bond to find possible interrelationship between them through Molecular Dynamics (MD) simulations on 3'-GMP, 3'-UMP, A>p, G>p, U>p, C>p, GpA>p and UpA>p. Interesting results of the effect of cyclisation and other constraints such as hydrogen bond between certain groups on the equilibrium ribose conformation have emerged from this study.
Resumo:
Physalis mottle virus (PhMV) belongs to the tymogroup of positive-strand RNA viruses with a genome size of 6 kb. Crude membrane preparations from PhMV-infected Nicotiana glutinosa plants catalyzed the synthesis of PhMV genomic RNA from endogenously bound template. Addition of exogenous genomic RNA enhanced the synthesis which was specifically inhibited by the addition of sense and antisense transcripts corresponding to 3' terminal 242 nucleotides as well as the 5' terminal 458 nucleotides of PhMV genomic RNA while yeast tRNA or ribosomal RNA failed to inhibit the synthesis. This specific inhibition suggested that the 5' and 3' non-coding regions of PhMV RNA might play an important role in viral replication.