943 resultados para non-parametric statistics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction. Despite the ban of lead-containing gasoline and paint, childhood lead poisoning remains a public health issue. Furthermore, a Medicaid-eligible child is 8 times more likely to have an elevated blood lead level (EBLL) than a non-Medicaid child, which is the primary reason for the early detection lead screening mandate for ages 12 and 24 months among the Medicaid population. Based on field observations, there was evidence that suggested a screening compliance issue. Objective. The purpose of this study was to analyze blood lead screening compliance in previously lead poisoned Medicaid children and test for an association between timely lead screening and timely childhood immunizations. The mean months between follow-up tests were also examined for a significant difference between the non-compliant and compliant lead screened children. Methods. Access to the surveillance data of all childhood lead poisoned cases in Bexar County was granted by the San Antonio Metropolitan Health District. A database was constructed and analyzed using descriptive statistics, logistic regression methods and non-parametric tests. Lead screening at 12 months of age was analyzed separately from lead screening at 24 months. The small portion of the population who were also related were included in one analysis and removed from a second analysis to check for significance. Gender, ethnicity, age of home, and having a sibling with an EBLL were ruled out as confounders for the association tests but ethnicity and age of home were adjusted in the nonparametric tests. Results. There was a strong significant association between lead screening compliance at 12 months and childhood immunization compliance, with or without including related children (p<0.00). However, there was no significant association between the two variables at the age of 24 months. Furthermore, there was no significant difference between the median of the mean months of follow-up blood tests among the non-compliant and compliant lead screened population for at the 12 month screening group but there was a significant difference at the 24 month screening group (p<0.01). Discussion. Descriptive statistics showed that 61% and 56% of the previously lead poisoned Medicaid population did not receive their 12 and 24 month mandated lead screening on time, respectively. This suggests that their elevated blood lead level may have been diagnosed earlier in their childhood. Furthermore, a child who is compliant with their lead screening at 12 months of age is 2.36 times more likely to also receive their childhood immunizations on time compared to a child who was not compliant with their 12 month screening. Even though there was no statistical significant association found for the 24 month group, the public health significance of a screening compliance issue is no less important. The Texas Medicaid program needs to enforce lead screening compliance because it is evident that there has been no monitoring system in place. Further recommendations include a need for an increased focus on parental education and the importance of taking their children for wellness exams on time.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El presente trabajo consistió en el desarrollo de una intervención nutricional a largo plazo llevada a cabo con jugadores profesionales de baloncesto, en función al cumplimiento de las recomendaciones nutricionales, con los siguientes dos objetivos: 1) valorar los cambios que dicha intervención produce sobre las prácticas nutricionales diarias de estos deportistas y 2) conocer la influencia de las modificaciones nutricionales producidas sobre la tasa de percepción del esfuerzo por sesión (RPE-Sesión) y la fatiga, a lo largo de una temporada competitiva, tanto para entrenamientos como partidos oficiales. Los objetivos del estudio se fundamentan en: 1) la numerosa evidencia científica que muestra la inadecuación de los hábitos nutricionales de los jugadores de baloncesto y otros deportistas respecto a las recomendaciones nutricionales; 2) el hecho ampliamente reconocido en la literatura especializada de que una ingesta nutricional óptima permite maximizar el rendimiento deportivo (a nivel físico y cognitivo), promoviendo una rápida recuperación y disminuyendo el riesgo de enfermedades y lesiones deportivas. No obstante, pocos estudios han llevado a cabo una intervención nutricional a largo plazo para mejorar los hábitos alimentarios de los deportistas y ninguno de ellos fue realizado con jugadores de baloncesto; 3) la elevada correlación entre la percepción del esfuerzo (RPE) y variables fisiológicas relacionadas al desarrollo de un ejercicio (por ej.: frecuencia cardíaca, consumo máximo de oxígeno o lactato sanguíneo) y los múltiples estudios que muestran la atenuación de la RPE durante la realización del ejercicio mediante una ingesta puntual de nutrientes, (especialmente de hidratos de carbono) aunque ninguno fue desarrollado en baloncesto; 4) el estudio incipiente de la relación entre la ingesta nutricional y la RPE-Sesión, siendo éste un método validado en baloncesto y otros deportes de equipo como indicador de la carga de trabajo interna, el rendimiento deportivo y la intensidad del ejercicio realizado; 5) el hecho de que la fatiga constituye uno de los principales factores influyentes en la percepción del esfuerzo y puede ser retrasada y/o atenuada mediante la ingesta de carbohidratos, pudiendo disminuir consecuentemente la RPE-Sesión y la carga interna del esfuerzo físico, potenciando el rendimiento deportivo y las adaptaciones inducidas por el entrenamiento; 6) la reducida evidencia acerca del comportamiento de la RPE-Sesión ante la modificación de la ingesta de nutrientes, encontrándose sólo un estudio llevado a cabo en baloncesto y 7) la ausencia de investigaciones acerca de la influencia que puede tener la mejora del patrón nutricional de los jugadores sobre la RPE-Sesión y la fatiga, desconociéndose si la adecuación de los hábitos nutricionales conduce a una disminución de estas variables en el largo plazo para todos los entrenamientos y partidos oficiales a nivel profesional. Por todo esto, este trabajo comienza con una introducción que presenta el marco teórico de la importancia y función de la nutrición en el deporte, así como de las recomendaciones nutricionales actuales a nivel general y para baloncesto. Además, se describen las intervenciones nutricionales llevadas a cabo previamente con otros deportistas y las consecuentes modificaciones sobre el patrón alimentario, coincidiendo este aspecto con el primer objetivo del presente estudio. Posteriormente, se analiza la RPE, la RPE-Sesión y la fatiga, focalizando el estudio en la relación de dichas variables con la carga de trabajo físico, la intensidad del entrenamiento, el rendimiento deportivo y la recuperación post ejercicio. Finalmente, se combinan todos los aspectos mencionados: ingesta nutricional, RPE percepción del esfuerzo y fatiga, con el fin de conocer la situación actual del estudio de la relación entre dichas variables, conformando la base del segundo objetivo de este estudio. Seguidamente, se exponen y fundamentan los objetivos antes mencionados, para dar lugar después a la explicación de la metodología utilizada en el presente estudio. Ésta consistió en un diseño de estudios de caso, aplicándose una intervención nutricional personalizada a tres jugadores de baloncesto profesional (cada jugador = un estudio de caso; n = 1), con el objetivo de adecuar su ingesta nutricional en el largo plazo a las recomendaciones nutricionales. A su vez, se analizó la respuesta individual de cada uno de los casos a dicha intervención para los dos objetivos del estudio. Para ello, cada jugador completó un registro diario de alimentos (7 días; pesada de alimentos) antes, durante y al final de la intervención. Además, los sujetos registraron diariamente a lo largo del estudio la RPE-Sesión y la fatiga en entrenamientos físicos y de balón y en partidos oficiales de liga, controlándose además en forma cuantitativa otras variables influyentes como el estado de ánimo y el sueño. El análisis de los datos consistió en el cálculo de los estadísticos descriptivos para todas las variables, la comparación de la ingesta en los diferentes momentos evaluados con las recomendaciones nutricionales y una comparación de medias no paramétrica entre el período pre intervención y durante la intervención con el test de Wilcoxon (medidas repetidas) para todas las variables. Finalmente, se relacionaron los cambios obtenidos en la ingesta nutricional con la percepción del esfuerzo y la fatiga y la posible influencia del estado de ánimo y el sueño, a través de un estudio correlacional (Tau_b de Kendall). Posteriormente, se presentan los resultados obtenidos y la discusión de los mismos, haciendo referencia a la evidencia científica relacionada que se encuentra publicada hasta el momento, la cual facilitó el análisis de la relación entre RPE-Sesión, fatiga y nutrición a lo largo de una temporada. Los principales hallazgos y su correspondiente análisis, por lo tanto, pueden resumirse en los siguientes: 1) los tres jugadores de baloncesto profesional presentaron inicialmente hábitos nutricionales inadecuados, haciendo evidente la necesidad de un nutricionista deportivo dentro del cuerpo técnico de los equipos profesionales; 2) las principales deficiencias correspondieron a un déficit pronunciado de energía e hidratos de carbono, que fueron reducidas con la intervención nutricional; 3) la ingesta excesiva de grasa total, ácidos grasos saturados, etanol y proteínas que se halló en alguno/s de los casos, también se adecuó a las recomendaciones después de la intervención; 4) la media obtenida durante un período de la temporada para la RPE-Sesión y la fatiga de entrenamientos, podría ser disminuida en un jugador individual mediante el incremento de su ingesta de carbohidratos a largo plazo, siempre que no existan alteraciones psico-emocionales relevantes; 5) el comportamiento de la RPE-Sesión de partidos oficiales no parece estar influido por los factores nutricionales modificados en este estudio, dependiendo más de la variación de elementos externos no controlables, intrínsecos a los partidos de baloncesto profesional. Ante estos resultados, se pudo observar que las diferentes características de los jugadores y las distintas respuestas obtenidas después de la intervención, reforzaron la importancia de utilizar un diseño de estudio de casos para el análisis de los deportistas de élite y, asimismo, de realizar un asesoramiento nutricional personalizado. Del mismo modo, la percepción del esfuerzo y la fatiga de cada jugador evolucionaron de manera diferente después de la intervención nutricional, lo cual podría depender de las diferentes características de los sujetos, a nivel físico, psico-social, emocional y contextual. Por ello, se propone que el control riguroso de las variables cualitativas que parecen influir sobre la RPE y la fatiga a largo plazo, facilitaría la comprensión de los datos y la determinación de factores desconocidos que influyen sobre estas variables. Finalmente, al ser la RPE-Sesión un indicador directo de la carga interna del entrenamiento, es decir, del estrés psico-fisiológico experimentado por el deportista, la posible atenuación de esta variable mediante la adecuación de los hábitos nutricionales, permitiría aplicar las cargas externas de entrenamiento planificadas, con menor estrés interno y mejor recuperación entre sesiones, disminuyendo también la sensación de fatiga, a pesar del avance de la temporada. ABSTRACT This study consisted in a long-term nutritional intervention carried out with professional basketball players according to nutritional recommendations, with the following two main objectives: 1) to evaluate the changes produced by the intervention on daily nutritional practices of these athletes and 2) to determine the influence of long term nutritional intake modifications on the rate of perceived exertion per session (Session-RPE) and fatigue, throughout a competitive season for training as well as competition games. These objectives are based on: 1) much scientific evidence that shows an inadequacy of the nutritional habits of basketball players and other athletes regarding nutritional recommendations; 2) the fact widely recognized in the scientific literature that an optimal nutrition allows to achieve the maximum performance of an athlete (both physically and cognitively), promoting fast recovery and decreasing risks of sports injuries and illnesses. However, only few studies carried out a long term nutritional intervention to improve nutritional practices of athletes and it could not be found any research with basketball players; 3) the high correlation between the rate of perceived exertion (RPE) and physiological variables related to the performance of physical exercise (e.g.: heart rate, maximum consumption of oxygen or blood lactate) and multiple studies showing the attenuation of RPE during exercise due to the intake of certain nutrients (especially carbohydrates), while none of them was developed in basketball; 4) correlation between nutritional intake and Session-RPE has been recently studied for the first time. Session-RPE method has been validated in basketball players and other team sports as an indicator of internal workload, sports performance and exercise intensity; 5) fatigue is considered one of the main influential factor on RPE and sport performance. It has also been observed that carbohydrates intake may delay or mitigate the onset of fatigue and, thus, decrease the perceived exertion and the internal training load, which could improve sports performance and training-induced adaptations; 6) there are few studies evaluating the influence of nutrient intake on Session-RPE and only one of them has been carried out with basketball players. Moreover, it has not been analyzed the possible effects of the adequacy of players’ nutritional habits through a nutritional intervention on Session-RPE and fatigue, variables that could be decreased for all training session and competition games because of an improvement of daily nutritional intake. Therefore, this work begins with an introduction that provides the conceptual framework of this research focused on the key role of nutrition in sport, as well as on the current nutritional recommendations for athletes and specifically for basketball players. In addition, previous nutritional interventions carried out with other athletes are described, as well as consequential modifications on their food pattern, coinciding with the first objective of the present study. Subsequently, RPE, Session-RPE and fatigue are analyzed, with focus on their correlation with physical workload, training intensity, sports performance and recovery. Finally, all the aforementioned aspects (nutritional intake, RPE and fatigue) were combined in order to know the current status of the relation between each other, this being the base for the second objective of this study. Subsequently, the objectives mentioned above are explained, continuing with the explanation of the methodology used in the study. The methodology consisted of a case-study design, carrying out a long term nutritional intervention with three professional basketball players (each player = one case study; n = 1), in order to adapt their nutritional intake to nutritional recommendations. At the same time, the individual response of each player to the intervention was analyzed for the two main objectives of the study. Each player completed a food diary (7 days; weighing food) in three moments: before, during and at the end of the intervention. In addition, the Session-RPE and fatigue were daily recorded throughout the study for all trainings (training with ball and resistance training) and competition games. At the same time, other potentially influential variables such as mood state and sleeping were daily controlled throughout the study. Data analysis consisted in descriptive statistics calculation for all the variables of the study, the comparison between nutritional intake (evaluated at different times) and nutritional recommendations and a non-parametric mean comparison between pre intervention and during intervention periods was made by Wilcoxon test (repeated measurements) for all variables too. Finally, the changes in nutritional intake, mood state and sleeping were correlated with the perceived exertion and fatigue through correctional study (Tau_b de Kendall). After the methodology, the study results and the associated discussion are presented. The discussion is based on the current scientific evidence that contributes to understand the relation between Session-RPE, fatigue and nutrition throughout the competitive season. The main findings and results analysis can be summarized as follows: 1) the three professional basketball players initially had inadequate nutritional habits and this clearly shows the need of a sports nutritionist in the coaching staff of professional teams; (2) the major deficiencies of the three players’ diet corresponded to a pronounced deficit of energy intake and carbohydrates consumption which were reduced with nutritional intervention; (3) the excessive intake of total fat, saturated fatty acids, ethanol and protein found in some cases were also adapted to the recommendations after the intervention; (4) Session-RPE mean and fatigue of a certain period of the competition season, could be decreased in an individual player by increasing his carbohydrates intake in the long term, if there are no relevant psycho-emotional disorders; (5) the behavior of the Session-RPE in competition games does not seem to be influenced by the nutritional factors modified in this study. They seem to depend much more on the variation of external non-controllable factors associated with the professional basketball games. Given these results, the different characteristics of each player and the diverse responses observed after the intervention in each individual for all the variables, reinforced the importance of the use of a case study design for research with elite athletes as well as personalized nutritional counselling. In the same way, the different responses obtained for RPE and fatigue in the long term for each player due to modification of nutritional habits, show that there is a dependence of such variables on the physical, psychosocial, emotional and contextual characteristics of each player. Therefore it is proposed that the rigorous control of the qualitative variables that seem to influence the RPE and fatigue in the long term, may facilitate the understanding of data and the determination of unknown factors that could influence these variables. Finally, because Session-RPE is a direct indicator of the internal load of training (psycho-physiological stress experienced by the athlete), the possible attenuation of Session-RPE through the improvement in nutritional habits, would allow to apply the planned external loads of training with less internal stress and better recovery between sessions, with a decrease in fatigue, despite of the advance of the season.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudio pretende estimar la eficiencia y la productividad de las principales provincias de la producción de trigo en Egipto. Los datos utilizados en este estudio son datos de panel a nivel de provincias del período 1990-2012, obtenidos del Ministerio de Agricultura y Recuperación Tierras, y de la Agencia Central de Movilización Pública y Estadística, Egipto. Se aplica el enfoque de fronteras estocásticas para medir la eficiencia (función de producción de Cobb-Douglas) y se emplean las especificaciones de Battese y Coelli (1992) y (1995). También se utiliza el índice de Malmquist como una aproximación no paramétrica (Análisis de Envolvente de Datos) para descomponer la productividad total de los factores de las principales provincias productoras de trigo en Egipto en cambio técnico y cambio de eficiencia. El coeficiente de tierra es positivo y significativo en los dos especificaciones Battese y Coelli (1992) y (1995), lo que implica que aumentar la tierra para este cultivo aumentaría significativamente la producción de trigo. El coeficiente de trabajo es positivo y significativo en la especificación de Battese y Coelli (1992), mientras que es positivo y no significativo en la especificación de Battese y Coelli (1995). El coeficiente de la maquinaria es negativo y no significativo en las dos especificaciones de Battese y Coelli (1992) y (1995). El coeficiente de cambio técnico es positivo y no significativo en la especificación de Battese y Coelli (1992), mientras que es positiva y significativo en la especificación de Battese y Coelli (1995). Las variables de efectos del modelo de ineficiencia Battese y Coelli (1995) indican que no existe impacto de las diferentes provincias en la producción de trigo en Egipto; la ineficiencia técnica de la producción de trigo tendió a disminuir durante el período de estudio; y no hay ningún impacto de género en la producción de trigo en Egipto. Los niveles de eficiencia técnica varían entre las diferentes provincias para las especificaciones de Battese y Coelli (1992) y (1995); el nivel mínimo medio de eficiencia técnica es 91.61% en la provincia de Fayoum, mientras que el nivel máximo medio de la eficiencia técnica es 98.69% en la provincia de Dakahlia. La eficiencia técnica toma un valor medio de 95.37%, lo que implica poco potencial para mejorar la eficiencia de uso de recursos en la producción de trigo. La TFPCH de la producción de trigo en Egipto durante el período 1990-2012 tiene un valor menor que uno y muestra un declive. Esta disminución es debida más al componente de cambio técnico que al componente de cambio de eficiencia. La disminución de TFPCH mejora con el tiempo. La provincia de Menoufia tiene la menor disminución en TFPCH, 6.5%, mientras que dos provincias, Sharkia y Dakahlia, son las que más disminuyen en TFPCH, 13.1%, en cada uno de ellas. Menos disminución en TFPCH ocurre en el período 2009-2010, 0.3%, mientras que más disminución se produce en TFPCH en el período 1990-1991, 38.9%. La disminución de la PTF de la producción de trigo en Egipto se atribuye principalmente a la mala aplicación de la tecnología. ABSTRACT The objectives of this study are to estimate the efficiency and productivity of the main governorates of wheat production in Egypt. The data used in this study is a panel data at the governorates level, it represents the time period 1990-2012 and taken from the Ministry of Agriculture and Land Reclamation, and the Central Agency for Public Mobilization and Statistics, Egypt. We apply the stochastic frontier approach for efficiency measurement (Cobb-Douglas production function) and the specifications of Battese and Coelli (1992) and (1995) are employed. Also we use Malmquist TFP index as a non-parametric approach (DEA) to decompose total factor productivity of the main governorates of wheat production in Egypt into technical change and efficiency change. The coefficient of land is positive and significant at Battese and Coelli (1992) and (1995) specifications, implying that increasing the wheat area could significantly enhance the production of wheat. The coefficient of labor is positive and significant at Battese and Coelli (1992) specification, while it is positive and insignificant at Battese and Coelli (1995) specification. The coefficient of machinery is negative and insignificant at the specifications of Battese and Coelli (1992) and (1995). The technical change coefficient is positive and insignificant at Battese and Coelli (1992) specification, while it is positive and significant at Battese and Coelli (1995) specification. The variables of the inefficiency effect model indicate that there is no impact from the location of the different governorates on wheat production in Egypt, the technical inefficiency of wheat production tended to decrease through the period of study, and there is no impact from the gender on wheat production in Egypt. The levels of technical efficiency vary among the different governorates for the specifications of Battese and Coelli (1992) and (1995); the minimum mean level of technical efficiency is 91.61% at Fayoum governorate, while the maximum mean level of technical efficiency is 98.69% at Dakahlia governorate. The technical efficiency takes an average value of 95.37%, this implying that little potential exists to improve resource use efficiency in wheat production. The TFPCH of wheat production in Egypt during the time period 1990-2012 has a value less than one and shows a decline; this decline is due mainly to the technical change component than the efficiency change component. The decline in TFPCH is generally improves over time. Menoufia governorate has the least declining in TFPCH by 6.5%, while two governorates, Sharkia and Dakahlia have the most declining in TFPCH by 13.1% for each of them. The least declining in TFPCH occurred at the period 2009- 2010 by 0.3%, while the most declining in TFPCH occurred at the period 1990-1991 by 38.9%. The declining in TFP of wheat production in Egypt is attributed mainly to poor application of technology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As análises biplot que utilizam os modelos de efeitos principais aditivos com inter- ação multiplicativa (AMMI) requerem matrizes de dados completas, mas, frequentemente os ensaios multiambientais apresentam dados faltantes. Nesta tese são propostas novas metodologias de imputação simples e múltipla que podem ser usadas para analisar da- dos desbalanceados em experimentos com interação genótipo por ambiente (G×E). A primeira, é uma nova extensão do método de validação cruzada por autovetor (Bro et al, 2008). A segunda, corresponde a um novo algoritmo não-paramétrico obtido por meio de modificações no método de imputação simples desenvolvido por Yan (2013). Também é incluído um estudo que considera sistemas de imputação recentemente relatados na literatura e os compara com o procedimento clássico recomendado para imputação em ensaios (G×E), ou seja, a combinação do algoritmo de Esperança-Maximização com os modelos AMMI ou EM-AMMI. Por último, são fornecidas generalizações da imputação simples descrita por Arciniegas-Alarcón et al. (2010) que mistura regressão com aproximação de posto inferior de uma matriz. Todas as metodologias têm como base a decomposição por valores singulares (DVS), portanto, são livres de pressuposições distribucionais ou estruturais. Para determinar o desempenho dos novos esquemas de imputação foram realizadas simulações baseadas em conjuntos de dados reais de diferentes espécies, com valores re- tirados aleatoriamente em diferentes porcentagens e a qualidade das imputações avaliada com distintas estatísticas. Concluiu-se que a DVS constitui uma ferramenta útil e flexível na construção de técnicas eficientes que contornem o problema de perda de informação em matrizes experimentais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Study Aim: Understanding injury incidence rates will be a great help with regards to preventing potential future damages. It is for this reason that this study suggests studying a large number of variables. The purpose of research is the relationship of events (empirical variables) that are usually taken into account in developing injury prevention programs during the battles and training in judo tournament. Material and methods: In this research project, 57 male judokas taking part in the Spanish National University Championship in 2009 were asked to complete a retrospective questionnaire. We analysed the following events: the most commonly injured body regions, the medical diagnosis, how and when the injury happened, the type of injury, the side of the body and the type of medical attention received. For the statistical analysis, we used the SPSS statistics programme to apply the Chi-square test in order to determine the significance levels for non-parametric tests from p<.05. Results: Significant differences were found in the most commonly injured body region, the shoulder/clavicle (p<.05), and in the most common diagnosis, the sprain (p<.05). Impact injuries (p<.05) are the most common and training (p<.05) is the most dangerous time. About the type of injury, 78.38% are new injuries (p<.05) and 69.05% affect the right hand side of the body (p<.05). Doctors are the most consulted specialists, but the physiotherapists obtained the best marks. Have been out due to injury for over 21 days 36.36% of the participants, but not for the entire season. Conclusions: The most common diagnosis in university student judokas coincides with those of elite judokas, with the sprain being the most common. University student judokas have a higher rate of shoulder/clavicle injuries, while professional judokas are prone to a higher rate of knee injuries. Training is the most common moment in which injuries occur, both in university student judokas and professional judokas. New injuries are the most common types of injuries in university student judokas and, while doctors are the most consulted specialists, the physiotherapists obtained the best marks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Indigenous Australians are at high risk for cardiovascular disease and type 2 diabetes. Carotid artery intimal medial thickness (CIMT) and brachial artery flow-mediated vasodilation (FMD) are ultrasound imaging based surrogate markers of cardiovascular risk. This study examines the relative contributions of traditional cardiovascular risk factors on CIMT and FMD in adult Indigenous Australians with and without type 2 diabetes mellitus. Method: One hundred and nineteen Indigenous Australians were recruited. Physical and biochemical markers of cardiovascular risk, together with CIMT and FMD were meausred for all subjects. Results: Fifty-three Indigenous Australians subjects (45%) had type 2 diabetes mellitus. There was a significantly greater mean CIMT in diabetic versus non-diabetic subjects (p = 0.049). In the non-diabetic group with non-parametric analyses, there were significant correlations between CIMT and: age (r = 0.64, p < 0.001), systolic blood pressure (r = 0.47, p < 0.001) and non-smokers (r = -0.30, p = 0.018). In the diabetic group, non-parametric analysis showed correlations between CIMT, age (r = 0.36, p = 0.009) and duration of diabetes (r = 0.30, p = 0.035) only. Adjusting forage, sex, smoking and history of cardiovascular disease, Hb(A1c) became the sole significant correlate of CIMT (r = 0.35,p = 0.01) in the diabetic group. In non-parametric analysis, age was the sole significant correlate of FMD (r = -0.31,p = 0.013), and only in non-diabetic subjects. Linear regression analysis showed significant associations between CIMT and age (t = 4.6,p < 0.001), systolic blood pressure (t = 2.6, p = 0.010) and Hb(A1c) (t = 2.6, p = 0.012), smoking (t = 2.1, p = 0.04) and fasting LDL-cholesterol (t = 2.1, p = 0.04). There were no significant associations between FMD and examined cardiovascular risk factors with linear regression analysis Conclusions: CIMT appears to be a useful surrogate marker of cardiovascular risk in this sample of Indigenous Australian subjects, correlating better than FMD with established cardiovascular risk factors. A lifestyle intervention programme may alleviate the burden of cardiovascular disease in Indigenous Australians by reducing central obesity, lowering blood pressure, correcting dyslipidaemia and improving glycaemic control. CIMT may prove to be a useful tool to assess efficacy of such an intervention programme. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo geral deste estudo foi analisar, interpretar e discutir as relações entre as percepções de sucesso na carreira, bem-estar no trabalho e a intenção de rotatividade em trabalhadores da Região Sudeste do Brasil. Participaram desta pesquisa 500 trabalhadores que atuam no estado de São Paulo em organizações não governamentais, públicas e privadas. Como instrumento para coleta de dados foi utilizado um questionário de autopreenchimento composto de cinco escalas que mediram as variáveis da pesquisa. A presente pesquisa se propôs a apresentar, interpretar e discutir as relações entre as variáveis, como também, testar as hipóteses referentes ao modelo conceitual proposto, por meio de uma pesquisa de natureza transversal com abordagem quantitativa, cujos dados coletados foram analisados por aplicação de técnicas estatísticas paramétricas (cálculos de estatísticas descritivas: médias, desvio padrão, teste t e correlações; cálculos de estatísticas multivariadas: análise de regressão linear múltipla stepwise e teste da normalidade das variáveis, por meio do teste de Kolmogorov-Smirnov). O tratamento e análise dos dados foram realizados pelo software estatístico Statistical Package for the Social Science SPSS, versão 18.0 para Windows. Os resultados obtidos demonstraram que as dimensões de bem-estar no trabalho exercem forte e significativo impacto sobre a intenção de rotatividade dos profissionais, enquanto que a percepção de sucesso na carreira contribuiu com valores baixos neste impacto, devido ao formato do modelo hipotético. A pesquisa possibilitou concluir que quanto mais a empresa se preocupa em proporcionar um ambiente de trabalho que seja animador, interessante e que cause entusiasmo, menos os profissionais pensarão em deixá-la.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In some applications of data envelopment analysis (DEA) there may be doubt as to whether all the DMUs form a single group with a common efficiency distribution. The Mann-Whitney rank statistic has been used to evaluate if two groups of DMUs come from a common efficiency distribution under the assumption of them sharing a common frontier and to test if the two groups have a common frontier. These procedures have subsequently been extended using the Kruskal-Wallis rank statistic to consider more than two groups. This technical note identifies problems with the second of these applications of both the Mann-Whitney and Kruskal-Wallis rank statistics. It also considers possible alternative methods of testing if groups have a common frontier, and the difficulties of disaggregating managerial and programmatic efficiency within a non-parametric framework. © 2007 Springer Science+Business Media, LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pearson's correlation coefficient (‘r’) is one of the most widely used of all statistics. Nevertheless, care needs to be used in interpreting the results because with large numbers of observations, quite small values of ‘r’ become significant and the X variable may only account for a small proportion of the variance in Y. Hence, ‘r squared’ should always be calculated and included in a discussion of the significance of ‘r’. The use of ‘r’ also assumes that the data follow a bivariate normal distribution (see Statnote 17) and this assumption should be examined prior to the study. If the data do not conform to such a distribution, the use of a non-parametric correlation coefficient should be considered. A significant correlation should not be interpreted as indicating ‘causation’ especially in observational studies, in which the two variables may be correlated because of their mutual correlations with other confounding variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has been postulated that immunogenicity results from the overall dissimilarity of pathogenic proteins versus the host proteome. We have sought to use this concept to discriminate between antigens and non-antigens of bacterial origin. Sets of 100 known antigenic and nonantigenic peptide sequences from bacteria were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we were unable to determine a threshold able to separate meaningfully antigen from non-antigen. Thus, antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to the human genome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Immunogenicity arises via many synergistic mechanisms, yet the overall dissimilarity of pathogenic proteins versus the host proteome has been proposed as a key arbiter. We have previously explored this concept in relation to Bacterial antigens; here we extend our analysis to antigens of viral and fungal origin. Sets of known viral and fungal antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we could not determine a threshold able meaningfully to separate non-antigen from antigen. We conclude that viral and fungal antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to mammalian genomes.