989 resultados para neutrinos supernova antarctica ice photon propagation AMANDA neutrino telescope real time
Resumo:
La tesi tratta lo studio del sistema QNX e dello sviluppo di un simulatore di task hard/soft real-time, tramite uso di un meta-scheduler. Al termine dello sviluppo vengono valutate le prestazioni del sistema operativo QNX Neutrino.
Resumo:
In the past few decades the impacts of climate warming have been significant in alpine glaciated regions. Many valley glaciers formerly linked as distributary glaciers to high-level icecaps have decoupled at their icefalls, exposing major escarpments and generating a suite of dynamic landforrns dominated by mass wasting. Ice-dominated landforms, here termed icy debris fans, develop rapidly by ice avalanching, rockfall, and icy debris flow. Field-based reconnaissance studies at two alpine settings, the Wrangell Mountains of Alaska and the Southern Alps of New Zealand, provide a preliminary morphogenetic model of spatial and temporal evolution of icy debris fans in a range of alpine settings. The influence of these processes on landform evolution is largely unrecognized in the literature dealing with post-glacial landform adjustment known as the paraglacial. A better understanding of these dynamic processes will be increasingly important because of the extreme geohazards characterizing these areas. Our field studies show that after glacier decoupling, icy debris fans begin to form along the base of bedrock escarpments at the mouths of catchments and prograde over valley glaciers. The presence of a distinct catchment, apex, and fan morphology distinguishes these landforms from other landforms common in periglacial hillslope settings receiving abundant clastic debris and ice. Ice avalanching is the most abundant process involved in icy debris fan formation. Fans developed below weakly incised catchments are dominated by ice avalanching and are composed primarily of ice with minor lithic detritus. Typically, avalanches fall into the fan catchments where sediments transform into grainflows that flow onto the fans. Once on the fans, avalanche deposits ablate rapidly, flattening and concentrating lithic fragments at the surface. Icy debris fans may become thick enough to become glaciers with splay crevasse systems. Fans developed below larger, more complex catchments are composed of higher proportions of lithic detritus resulting from temporary storage of ice and lithic detritus deposits within the catchment. Episodic outbursts of meltwater from the icecap may mix with the stored sediments and mobilize icy debris flows (mixture of ice and lithic clasts) onto the fans. Our observations indicate that the entire evolutionary cycle of icy debris fans probably occurs during an early paraglacial interval (i.e., decades to 100 years). Observations comparing avalanche frequency, volume, and fan morphologic evolution at the Alaska site between 2006 and 2010 illustrate complex response between icy debris fans even within the same cirque - where one fan may be growing while others are downwasting because of differences in ice supply controlled by their respective catchments and icecap contributions. As ice supply from the icecap diminishes through time, icy debris fans rapidly downwaste and eventually evolve into talus cones that receive occasional but ephemeral ice avalanches.
Resumo:
Measuring shallow seismic sources provides a way to reveal processes that cannot be directly observed, but the correct interpretation and value of these signals depend on the ability to distinguish source from propagation effects. Furthermore, seismic signals produced by a resonating source can look almost identical to those produced by impulsive sources, but modified along the path. Distinguishing these two phenomena can be accomplished by examining the wavefield with small aperture arrays or by recording seismicity near to the source when possible. We examine source and path effects in two different environments: Bering Glacier, Alaska and Villarrica Volcano, Chile. Using three 3-element seismic arrays near the terminus of the Bering Glacier, we have identified and located both terminus calving and iceberg breakup events. We show that automated array analysis provided a robust way to locate icequake events using P waves. This analysis also showed that arrivals within the long-period codas were incoherent within the small aperture arrays, demonstrating that these codas previously attributed to crack resonance were in fact a result of a complicated path rather than a source effect. At Villarrica Volcano, seismometers deployed from near the vent to ~10 km revealed that a several cycle long-period source signal recorded at the vent appeared elongated in the far-field. We used data collected from the stations nearest to the vent to invert for the repetitive seismic source, and found it corresponded to a shallow force within the lava lake oriented N75°E and dipping 7° from horizontal. We also used this repetitive signal to search the data for additional seismic and infrasonic properties which included calculating seismic-acoustic delay times, volcano acoustic-seismic ratios and energies, event frequency, and real-time seismic amplitude measurements. These calculations revealed lava lake level and activity fluctuations consistent with lava lake level changes inferred from the persistent infrasonic tremor.
Resumo:
In this report, we attempt to define the capabilities of the infrared satellite remote sensor, Multifunctional Transport Satellite-2 (MTSAT-2) (i.e. a geosynchronous instrument), in characterizing volcanic eruptive behavior in the highly active region of Indonesia. Sulfur dioxide data from NASA's Ozone Monitoring Instrument (OMI) (i.e. a polar orbiting instrument) are presented here for validation of the processes interpreted using the thermal infrared datasets. Data provided from two case studies are analyzed specifically for eruptive products producing large thermal anomalies (i.e. lava flows, lava domes, etc.), volcanic ash and SO2 clouds; three distinctly characteristic and abundant volcanic emissions. Two primary methods used for detection of heat signatures are used and compared in this report including, single-channel thermal radiance (4-µm) and the normalized thermal index (NTI) algorithm. For automated purposes, fixed thresholds must be determined for these methods. A base minimum detection limit (MDL) for single-channel thermal radiance of 2.30E+05 Wm- 2sr-1m-1 and -0.925 for NTI generate false alarm rates of 35.78% and 34.16%, respectively. A spatial comparison method, developed here specifically for use in Indonesia and used as a second parameter for detection, is implemented to address the high false alarm rate. For the single-channel thermal radiance method, the utilization of the spatial comparison method eliminated 100% of the false alarms while maintaining every true anomaly. The NTI algorithm showed similar results with only 2 false alarms remaining. No definitive difference is observed between the two thermal detection methods for automated use; however, the single-channel thermal radiance method coupled with the SO2 mass abundance data can be used to interpret volcanic processes including the identification of lava dome activity at Sinabung as well as the mechanism for the dome emplacement (i.e. endogenous or exogenous). Only one technique, the brightness temperature difference (BTD) method, is used for the detection of ash. Trends of ash area, water/ice area, and their respective concentrations yield interpretations of increased ice formation, aggregation, and sedimentation processes that only a high-temporal resolution instrument like the MTSAT-2 can analyze. A conceptual model of a secondary zone of aggregation occurring in the migrating Kelut ash cloud, which decreases the distal fine-ash component and hazards to flight paths, is presented in this report. Unfortunately, SO2 data was unable to definitively reinforce the concept of a secondary zone of aggregation due to the lack of a sufficient temporal resolution. However, a detailed study of the Kelut SO2 cloud is used to determine that there was no climatic impacts generated from this eruption due to the atmospheric residence times and e-folding rate of ~14 days for the SO2. This report applies the complementary assets offered by utilizing a high-temporal and a high-spatial resolution satellite, and it demonstrates that these two instruments can provide unparalleled observations of dynamic volcanic processes.
Resumo:
In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.
Resumo:
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Resumo:
Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.
Resumo:
Thermal screening masses related to the conserved vector current are determined for the case that the current carries a non-zero Matsubara frequency, both in a weak-coupling approach and through lattice QCD. We point out that such screening masses are sensitive to the same infrared physics as light-cone real-time rates. In particular, on the perturbative side, the inhomogeneous Schrödinger equation determining screening correlators is shown to have the same general form as the equation implementing LPM resummation for the soft-dilepton and photon production rates from a hot QCD plasma. The static potential appearing in the equation is identical to that whose soft part has been determined up to NLO and on the lattice in the context of jet quenching. Numerical results based on this potential suggest that screening masses overshoot the free results (multiples of 2πT) more strongly than at zero Matsubara frequency. Four-dimensional lattice simulations in two-flavour QCD at temperatures of 250 and 340 MeV confirm the non-static screening masses at the 10% level. Overall our results lend support to studies of jet quenching based on the same potential at T ≳ 250 MeV.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
After an outbreak of Yersinia enterocolitica at a NHP research facility, we performed a multispecies investigation of the prevalence of Yersinia spp. in various mammals that resided or foraged on the grounds of the facility, to better understand the epizootiology of yersiniosis. Blood samples and fecal and rectal swabs were obtained from 105 captive African green monkeys (AGM), 12 feral cats, 2 dogs, 20 mice, 12 rats, and 3 mongooses. Total DNA extracted from swab suspensions served as template for the detection of Y. enterocolitica DNA by real-time PCR. Neither Y. enterocolitica organisms nor their DNA were detected from any of these samples. However, Western blotting revealed the presence of Yersinia antibodies in plasma. The AGM samples revealed a seroprevalence of 91% for Yersinia spp. and of 61% for Y. enterocolitica specifically. The AGM that were housed in cages where at least one fatality occurred during the outbreak (clinical group) had similar seroprevalence to that of AGM housed in unaffected cages (nonclinical group). However, the nonclinical group was older than the clinical group. In addition, 25%, 100%, 33%, 10%, and 10% of the sampled local cats, dogs, mongooses, rats, and mice, respectively, were seropositive. The high seroprevalence after this outbreak suggests that Y. enterocolitica was transmitted effectively through the captive AGM population and that age was an important risk factor for disease. Knowledge regarding local environmental sources of Y. enterocolitica and the possible role of wildlife in the maintenance of yersiniosis is necessary to prevent and manage this disease.