948 resultados para neuropathic severity
Resumo:
Background: Neuropathic pain is associated with altered expression of voltage-gated sodium channels (VGSCs) leading to peripheral nerve hyperexcitability. Interestingly, in cell expression systems, the ubiquitin ligase Nedd4-2 regulates the cell membrane density of the most abundant peripheral and pain-related VGSC, namely Nav1.7, and decreases its sodium current. Yet nothing is known about the involvement of Nedd4-2 in nociception and chronic pain. Therefore, the goal of this study is (i) to characterize Nedd4-2 and Nav1.7 expression in an experimental model of neuropathic pain (ii) to design by viral vector-mediated gene therapy an approach to depict the implication of Nedd4-2 in chronic pain. Methods: Western Blot and immunohistochemistry experiments detecting Nav1.7 and Nedd4-2 were performed in rodent DRGs 7 days after spared nerve injury (SNI). For the viral vector-mediated gene therapy, a recombinant Adeno-Associated Virus (rAAV2/6) was generated expressing the Nedd4-2 gene. Intrathecal injection of rAAV2/6 was followed 2 weeks after by the SNI surgery. Data are expressed in mean ± SEM, n = 4 in each condition. Results: Immunofluorescence on DRGs neurons reveals a decreased number of positive Nedd4-2 cells in the SNI model (27.0 ± 1.2%) versus sham group (43.4 ± 3.5%; p <0.005), as well as an increase in positive Nav1.7 cells in SNI (50.1 ± 2.9%) versus Sham (41.6 ± 1.8%; p <0.05). The change of Nedd4-2 expression was confirmed by western-blot analysis. In addition, we show that Nedd4-2 and Nav1.7 are largely expressed in overlapping cell populations, chiefly colocalizing with markers of small nociceptive neurons. Furthermore, we report that intrathecal injection of rAAV is able to counteract the reduction of Nedd4-2 expression in SNI animals. Conclusion: Our results indicate that Nedd4-2 is mainly expressed in nociceptors and downregulated after nerve injury. Moreover, our data suggest that the reduction of Nedd4-2, after nerve injury, may modulate Nav1.7 activity and contribute to hyperexcitability in neuropathic pain. A normal level of Nedd4-2 can be restored using a viral vector and we will further assess its functional effect on pain sensitivity.
Resumo:
The prognosis of community-acquired pneumonia ranges from rapid resolution of symptoms and full recovery of functional status to the development of severe medical complications and death. The pneumonia severity index is a rigorously studied prediction rule for prognosis that objectively stratifies patients into quintiles of risk for short-term mortality on the basis of 20 demographic and clinical variables routinely available at presentation. The pneumonia severity index was derived and validated with data on >50,000 patients with community-acquired pneumonia by use of well-accepted methodological standards and is the only pneumonia decision aid that has been empirically shown to safely increase the proportion of patients given treatment in the outpatient setting. Because of its prognostic accuracy, methodological rigor, and effectiveness and safety as a decision aid, the pneumonia severity index has become the reference standard for risk stratification of community-acquired pneumonia
Resumo:
The spared nerve injury (SNI) model mimics human neuropathic pain related to peripheral nerve injury and is based upon an invasive but simple surgical procedure. Since its first description in 2000, it has displayed a remarkable development. It produces a robust, reliable and long-lasting neuropathic pain-like behaviour (allodynia and hyperalgesia) as well as the possibility of studying both injured and non-injured neuronal populations in the same spinal ganglion. Besides, variants of the SNI model have been developed in rats, mice and neonatal/young rodents, resulting in several possible angles of analysis. Therefore, the purpose of this chapter is to provide a detailed guidance regarding the SNI model and its variants, highlighting its surgical and behavioural testing specificities.
Resumo:
Numerous studies have examined which individual defense mechanisms are related with mental health, and which are linked with psychopathology. However, the idea that a flexible use of defensive mechanisms is related to psychological wellbeing remained a clinical assumption, which this study sought to test empirically. A total of 62 (N = 62) outpatients participated in the study and were assessed with the Symptom Checklist-90R and the Social Adjustment Self-rated Scale. A subsample of 40 participants was further assessed using the Hamilton Depression (HAMD-21) and Anxiety scales (HAMA-21). The first therapy session of all participants was transcribed and rated using the Defense Mechanisms Ratings Scales (), and the Overall Defensive Functioning (ODF) score, which indicates the maturity of one's defensive functioning, was computed. An indicator of flexible use of defenses was also calculated based on the Gini Concentration C measure. Results showed that defensive flexibility, but not ODF, could predict anxiety scores. Symptom severity was predicted by both ODF and defensive flexibility, although in directions opposite to our predictions. Results suggest that defensive flexibility captures another aspect of an individual's functioning not assessed by the ODF, and that it is a promising new way of documenting defensive functioning.
Resumo:
In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.
Resumo:
Body fluid biomarkers of central nervous system damage may help improve the prognostic and diagnostic accuracy in ischemic stroke. We studied 53 patients. Stroke severity and outcome was rated using the National Institutes of Health Stroke Scale and modified Rankin scale. Ferritin, S100B, and NfH were measured in cerebrospinal fluid (CSF) and serum. Infarct volume was calculated from T2W images. CSF S100B (median 1.00 ng/mL) and CSF ferritin (10.0 ng/mL) levels were elevated in patients with stroke compared with control subjects (0.62 ng/mL, P < .0001; 2.34 ng/mL, P < .0001). Serum S100B (0.09 ng/mL) was higher in patients with stroke compared with control subjects (0.01 ng/mL). CSF S100B levels were higher in patients with a cardioembolic stroke (2.88 ng/mL) than in those with small-vessel disease (0.89 ng/mL, P < .05). CSF S100B levels correlated with the National Institutes of Health Stroke Scale score on admission (R = 0.56, P < .01) and the stroke volume (R = 0.44, P = .01). CSF S100B and NfH-SMI35 levels correlated with outcome on the modified Rankin scale. CSF S100B levels were related to stroke severity and infarct volume and highest in cardioembolic stroke.
Resumo:
BACKGROUND: Results from cohort studies evaluating the severity of respiratory viral co-infections are conflicting. We conducted a systematic review and meta-analysis to assess the clinical severity of viral co-infections as compared to single viral respiratory infections. METHODS: We searched electronic databases and other sources for studies published up to January 28, 2013. We included observational studies on inpatients with respiratory illnesses comparing the clinical severity of viral co-infections to single viral infections as detected by molecular assays. The primary outcome reflecting clinical disease severity was length of hospital stay (LOS). A random-effects model was used to conduct the meta-analyses. RESULTS: Twenty-one studies involving 4,280 patients were included. The overall quality of evidence applying the GRADE approach ranged from moderate for oxygen requirements to low for all other outcomes. No significant differences in length of hospital stay (LOS) (mean difference (MD) -0.20 days, 95% CI -0.94, 0.53, p = 0.59), or mortality (RR 2.44, 95% CI 0.86, 6.91, p = 0.09) were documented in subjects with viral co-infections compared to those with a single viral infection. There was no evidence for differences in effects across age subgroups in post hoc analyses with the exception of the higher mortality in preschool children (RR 9.82, 95% CI 3.09, 31.20, p<0.001) with viral co-infection as compared to other age groups (I2 for subgroup analysis 64%, p = 0.04). CONCLUSIONS: No differences in clinical disease severity between viral co-infections and single respiratory infections were documented. The suggested increased risk of mortality observed amongst children with viral co-infections requires further investigation.
Resumo:
Aim: We investigated the relationship between the magnitude of comprehensive hepatitis C virus (HCV)-specific CD8(+) T-cell responses and the clinical course of acute HCV infection. Methods: Six consecutive patients with acute HCV infection were studied. Analysis of HCV-specific CD8(+) T-cell responses was performed using an interferon-gamma-based enzyme-linked immunospot assay using peripheral CD8(+) T-cells, monocytes and 297 20-mer synthetic peptides overlapping by 10 residues and spanning the entire HCV sequence of genotype 1b. Results: Five patients presented detectable HCV-specific CD8(+) T-cell responses against a single and different peptide, whereas 1 patient showed responses against three different peptides. Neither the magnitude of HCV-specific CD8(+) T-cell responses nor the severity of hepatitis predicts the outcome of acute hepatitis. The maximum number of HCV-specific CD8(+) T-cells correlated with maximum serum alanine aminotransferase level during the course (r = 0.841, P = 0.036). Conclusions: HCV-specific CD8(+) T-cell responses were detectable in all 6 patients with acute HCV infection, and 6 novel HCV-specific CTL epitopes were identified. Acute HCV infection can resolve with detectable HCV-specific CD8(+) T-cell responses, but without development of antibody against HCV.
Resumo:
We here summarize five articles bringing new advances in our knowledge on neuropathic pain and put them into perspective with our current understanding. The first uses a mechanism-based approach with a capsaicin test to stratify patients suffering from painful diabetic neuropathy before starting a topical clonidine treatment. The second reviews disinhibition as a critical mechanism and a promising target for chronic pain. The third evokes neuroglial interactions and its implication regarding the interplay between injuries in childhood and hypersensitivity in adulthood. The last articles remind us that interventional therapies, not always very invasive, have a future potential in the therapy of frequent conditions such as head pain disorders.
Resumo:
Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.
Resumo:
This study assesses whether severity of physical partner aggression is associated with alcohol consumption at the time of the incident, and whether the relationship between drinking and aggression severity is the same for men and women and across different countries. National or large regional general population surveys were conducted in 13 countries as part of the GENACIS collaboration. Respondents described the most physically aggressive act done to them by a partner in the past 2 years, rated the severity of aggression on a scale of 1 to 10, and reported whether either partner had been drinking when the incident occurred. Severity ratings were significantly higher for incidents in which one or both partners had been drinking compared to incidents in which neither partner had been drinking. The relationship did not differ significantly for men and women or by country. We conclude that alcohol consumption may serve to potentiate violence when it occurs, and this pattern holds across a diverse set of cultures. Further research is needed that focuses explicitly on the nature of alcohol's contribution to intimate partner aggression. Prevention needs to address the possibility of enhanced dangers of intimate partner violence when the partners have been drinking and eliminate any systemic factors that permit alcohol to be used as an excuse. Clinical services for perpetrators and victims of partner violence need to address the role of drinking practices, including the dynamics and process of aggressive incidents that occur when one or both partners have been drinking.