167 resultados para nanosheets


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few layered nitrogen doped graphene (NG) attracts great interest in energy storage and conversion applications due to its electronic and catalytic properties. However, its bulk production cannot be envisioned by the current synthetic methods. Here we report a facile, solvent-less, low cost and high yield process for the synthesis of NG. Mechanochemical solid-state exfoliation allows scalable synthesis of holey and crumple nitrogen-doped few-layered graphene from graphite with controlled high concentration N doping and a high surface area through ball-milling. By adjusting the ratio of starting materials, the nitrogen content can be modulated from 4.87 to 17.83 at.%. Furthermore, the types of nitrogen-containing species in few-layered graphene can also be controlled. The resultant NG exhibits superior oxygen reduction reaction performance and more reliable stability than commercial Pt/C catalysts. This journal is

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of nanomaterials as novel supporting materials for enzyme immobilisation has generated incredible interest in the biotechnology community. These robust nanostructured forms, such as nanoparticles, nanofibres, nanotubes, nanoporous, nanosheets, and nanocomposites, possess a high surface area to volume ratios that can cause a high enzyme loading and facilitate reaction kinetics, thus improving biocatalytic efficiency for industrial applications. In this article, we discuss research opportunities of nanoscale materials in enzyme biotechnology and highlight recent developments in biofuel production using advanced material supports for enzyme immobilisation and stabilisation. Synthesis and functionalisation of nanomaterial forms using different methods are highlighted. Various simple and effective strategies designed to result in a stable, as well as functional protein-nanomaterial conjugates are also discussed. Analytical techniques confirming enzyme loading on nanomaterials and assessing post-immobilisation changes are discussed. The current status of versatile nanomaterial support for biofuel production employing cellulases and lipases is described in details. This report concludes with a discussion on the likely outcome that nanomaterials will become an integral part of sustainable bioenergy production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m(2) g(-1), and the total pore volume is about 1.17 cm(3) g(-1). The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective oil/water separation and removal of organic molecules from water are of worldwide importance for water source protection. Multifunctional sorbent materials with excellent sorption capacity, stability, and recyclability properties need to be developed. Here, flexible and multifunctional polymer/porous boron nitride nanosheets (BNNSs) membranes with high water permeability, exhibiting high effectiveness and stability in the purification of simulated wastewater tainted with either oil/water emulsion or organic molecules, are reported. Remarkably, the flexible nature of these porous membranes enables simplicity of operation for water remediation processing and ease of post-processing collection. The composite membrane also displays a remarkably high permeability of 8 × 104 L μm m-2 h-1 bar-1, roughly three orders of magnitude higher than pure polymer, and excellent filter efficiencies for the pharmaceuticals ciprofloxacin, chlortetracycline, and carbamazepine (up to 14.2 L g-1 of BNNSs in the composite membrane for a concentration of 10 mg L-1 ciprofloxacin) and the dye methylene blue (up to 9.3 L g-1 of BNNSs in the composite membrane at a concentration of 30 mg L-1). Exhausted membranes can be readily rejuvenated by simple washing with retention of their high-performance characteristics. The results demonstrate the potential efficacy and practicality of these membranes for water cleaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl3 and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an alternative electrochemical technique to monitor covalent bond formation in real-time using nanoparticle-electrode collisions. The method is based on recognising the redox current when MP-11 functionalised chemical reduced graphene oxide (rGO) nanosheets collide with Lomant's reagent modified gold microelectrode. This facile and highly sensitive monitoring method can be useful for investigating the fundamental of single-molecule reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A simple, signal-off and reusable electrochemical biosensor was developed for sensitive and selective detection of mercury(II) based on thymine-mercury(II)-thymine (T-Hg2+-T) complex and the remarkable difference in the affinity of graphene with double strand DNA (ds-DNA) and single strand DNA (ss-DNA). Our system was composed of ferrocene-tagged probe DNA and graphene. Due to the noncovalent assembly, the ferrocene-tagged probe ss-DNA was immobilized on the surface of graphene nanosheets directly and employed to amplify the electrochemical signal. In the presence of Hg2+, the ferrocene-labeled T-rich DNA probe hybridized with target probe to form ds-DNA via the Hg2+-mediated coordination of T-Hg2+-T base pairs. As a result, the duplex DNA complex kept away from the graphene surface due to the weak affinity of graphene and ds-DNA, and the redox current decreased substantially. Meanwhile, the graphene decorated GCE surface was released for the reusability. Under the optimal conditions, the proposed sensor showed a linear concentration range from 25 pM to 10 μM with a detection limit of 5 pM for Hg2+ detection. The strategy afforded exquisite selectivity for Hg2+ against other metal ions in real environmental samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution positron annihilation lifetime (PAL) and two-detector coincidence Doppler broadening of annihilation radiation (2D-DBAR) measurements on graphite and its oxide derivatives for defect information, differing in oxidization agents, are reported. Positron measurements were found to be very effective in the investigation of defects in graphite and its derivatives. Positrons are mainly annihilated in vacancy-like defects on the particle surface and in large open-volume holes associated with the interface of graphite and graphite oxide. Different types of defects have been detected for unexfoliated graphite oxide and exfoliated graphene oxide based on 2D-DBAR measurements, namely the vacancy cluster and vacancy-oxygen complexes. It is also interesting to observe that the calculated large open-volume diameter of graphene oxide coincides with the distance between the layers from the XRD investigation, which indicates that the annihilation of the long-lived lifetime component τ3 might take place in the area between the graphene layers; no large open-volume hole has been detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 A green method for the deoxygenation of graphene oxide (GO) was developed using K2CO3 as a reusable reduction agent. The size and thickness of the reduced GO are less than 1 μm and around 0.85 nm, respectively. Carbon dioxide is the only byproduct during this process. The reduction mechanism of the graphene oxide includes two reduction steps. On the one hand, ionic oxygen generated from the electrochemical reaction between hydroxyl ions and oxygen in the presence of K2CO3 reacts with carbonyl groups attached to the GO layers at 50°C. On the other hand, ionic oxygen attacks hydroxyl and epoxide groups, which become carbonyl groups and then are converted to carbon dioxide by K2CO3 at 90°C. These oxygenous groups are finally converted to CO2 from graphene layers, leading to the formation of graphene sheets. Headspace solid-phase microextraction and gas chromatography-mass spectrometry detected the existence of n-dodecanal and 4-ethylbenzoic acid cyclopentyl ester during the reduction, suggesting that oxygen functional groups on the GO layers are not only aligned, but randomly dispersed in some areas based on the proposed mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current work, three studies about non-aqueous dispersions of particles were carried out by using an amphiphilic block copolymer poly(isoprene)-block-poly(methyl methacrylate) (PI-b-PMMA) as stabilizer:rn1. Dispersions of polyurethane and polyurea porous particles for polymer compositesrn2. Dispersions of PMMA and PU particles with PDI dye for study of Single Molecule Spectroscopy Detectionrn3. Dispersions of graphene nanosheets for polymer compositesrnrnIn the first study, highly porous polyurethane and polyurea particles were prepared in a non-aqueous emulsion. The preparation of porous particles consisted of two parts: At first, a system was developed where the emulsion had high stability for the polymerization among diisocyanate, diol and water. In the second part, porous particles were prepared by using two methods fission/fusion and combination by which highly porous particles were obtained. In this study, the applications of porous particles were also investigated where polyurethane particles were tested as filling material for polymer composites and as catalyst carrier for polyethylene polymerization. rnrnIn the second study, PMMA and PU particles from one non-aqueous emulsion were investigated via single molecule fluorescence detection. At first the particles were loaded with PDI dye, which were detected by fluorescence microscopy. The distribution and orientation of the PDI molecules in the particles were successfully observed by Single Molecule Fluorescence Detection. The molecules were homogenously distributed inside of the particles. In addition they had random orientation, meaning that no aggregations of dye molecules were formed. With the results, it could be supposed that the polymer chains were also homogenously distributed in the particles, and that the conformation was relatively flexible. rnrnIn the third part of the study, graphene nanosheets with high surface area were dispersed in an organic solvent with low boiling point and low toxicity, THF, stabilized with a block copolymer PI-b-PMMA. The dispersion was used to prepare polymer composites. It was shown that the modified graphene nanosheets had good compatibility with the PS and PMMA matrices. rn