853 resultados para multiple table factor analysis
(Table 9) Factor loading matrix for benthic foraminifera of Northwest Indian Ocean surface sediments
Resumo:
This study extends previous attempts to assess emotion with single adjective descriptors, by examining semantic as well as cognitive, motivational, and intensity features of emotions. The focus was on seven negative emotions common to several emotion typologies: anger, fear, sadness, shame, pity, jealousy, and contempt. For each of these emotions, seven items were generated corresponding to cognitive appraisal about the self, cognitive appraisal about the environment, action tendency, action fantasy, synonym, antonym, and intensity range of the emotion, respectively. A pilot study established that 48 of the 49 items were linked predominantly to the specific emotions as predicted. The main data set comprising 700 subjects' ratings of relatedness between items and emotions was subjected to a series of factor analyses, which revealed that 44 of the 49 items loaded on the emotion constructs as predicted. A final factor analysis of these items uncovered seven factors accounting for 39% of the variance. These emergent factors corresponded to the hypothesized emotion constructs, with the exception of anger and fear, which were somewhat confounded. These findings lay the groundwork for the construction of an instrument to assess emotions multicomponentially.
Resumo:
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.