991 resultados para multilayer polyamide films
Resumo:
We initiate a systematic exploration of a natural polymer, chitosan, as a structural material for designing functional layers on electrode surfaces in this work. Au colloid films are organized on chitosan layer by adsorption. We have successfully constructed a multilayer An nanoparticle assembly through electrostatic interactions on chitosan functionalized quartz substrates by the alternate treatment of the substrate with solution of citrate-stabilized gold nanoparticles (negatively charged) and chitosan solution (positively charged). The resulting substrates were characterized by UV-Vis spectrometry, atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) measurements. These assemblies of colloid An multilayer are highly stable, and can be kept for a long time in distilled water, only being removed by scratching or extreme electrochemical conditions.
Resumo:
A novel photochromic multilayer film containing polyoxometalates has been fabricated using layer-by-layer self-assembly.
Resumo:
The behavior of arachidic acid on the surface of YCI3 aqueous subphase was studied by LB and Brewster angle microscopy techniques. The results showed that the pre-compressing time and the pH of the subphase played an important role in the forming of the monolayer. The monolayer on the subphase surface was irreversible. If the monolayer was compressed into wrinkles, the monolayer could not become uniform again. The optimum transferring conditions were selected and the ordered yttrium arachidate multilayer with a long spacing of 4.96 nm and a tilt angle of 28.5degrees of the three alkyl chains from the surface normal was fabricated and characterized.
Resumo:
An ultrathin composite film containing both polyoxometalate anion [PMo12O40](3-) ( PMo12) and a planar binuclear phthalocyanine, bi-CoPc, has been prepared by the electrostatic layer-by-layer self-assembly method. UV-vis measurements revealed regular film growth with each four-layer {PMo12/bi-CoPc/PSS/PAH} adsorption. The lm structure was characterized by small-angle X-ray reflectivity measurements, X-ray photoelectron spectra, and AFM images. The nanothick film shows a third-order nonlinear optical response of chi((3)) = 4.21 x 10(-12) esu. Experimental investigations also indicate that the combination of polyoxometalate anions [PMo12O40](3-) with the phthalocyanine bi-CoPc in multilayer films can enhance the third-order NLO susceptibility and modify the third-order NLO absorption of bi-CoPc.
Resumo:
Ultrathin multilayer films of poly(allylamine hydrochloride) (PAH) and a polyoxotungstoeuropate cluster K-13[Eu(SiW11O39)(2)] (Eu(SiW11)(2)) have been prepared by the layer-by-layer self-assembly method. The Eu(SiW11)(2)/PAH multilayer films have been characterized by X-ray photoelectron spectra and atomic force microscopy (AFM). UV-Vis measurements reveal regular film growth with each Eu(SiW11)(2) adsorption. The photoluminescent behavior of the film at room temperature was to show the characteristic Eu3+ emission pattern of D-5(o) --> F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent multilayers with polyoxometalates.
Resumo:
Through layer-by-layer assembly, the bis-Keggin-type heteropolyanion K10H3 [Nd(SiMo7W4O39)(2)] XH2O was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of the heteropolyanion was investigated. Cyclic voltammetry proved the uniform growth of the film. However, the characteristic redox peaks of the heteropolyanion in the film were deformed with increasing of the number of the multilayer film. The effect of pH on the redox behaviors of [Nd(SiMo7W4)(2)](13-) in the film was discussed. The multilayer film electrodes have excellent electrocatalytic activities to the reduction of BrO3-, HNO2 and H2O2.
Resumo:
Photoluminescent organic-inorganic composite films incorporating the rare-earth-containing polyoxometalate Na-9[EuW10O36] (EW) and poly(allylamine hydrochloride) (PAH) have been prepared by the layer-by-layer self-assembly method. UV-vis spectroscopy and ellipsometry were used to follow the fabrication process of the EW/PAH composite films. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. An average EW/PAH bilayer thickness of ca. 2.1 nm was determined by ellipsometry. In addition, scanning electron microscopy and atomic force microscopy images of the EW/PAH composite films indicate that the film surface is relatively uniform and smooth. The photoluminescent properties of these films were investigated by fluorescence spectroscopy.
Resumo:
We reported on the multilayer architecture containing diazo-resins (DAR) as polycations and polyaniline poly(aniline-co-N-propanesulfonic acid aniline) (PAPSAH) as polyanions held together by electrostatic interaction. Upon UV irradiation, the adjacent interfaces of the multilayer reacted to form a covalently crosslinking structure which greatly improved the stability of the films as confirmed by solvent etching experiments. These changes were confirmed by UV-Vis and FTIR spectroscopy. The thickness of the covalently attached films were characterized with small angle X-ray diffraction (SAXD) and a value of 30.0 Angstrom per bilayer was obtained. This type of film was further characterized by cyclic voltammetry which showed that the electroactive property of PAPSAH was still kept in the films after photoreaction. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We describe here a controlled fabrication of ultrathin monolayer and multilayer films consisting of silicotungstic heteropolyanion SiW12O404- and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) on Au electrodes previously self-assembled with cysteamine monolayers based on layer-by-layer electrostatic interaction. The thus-forming monolayer and multilayer chemically modified electrodes are investigated by cyclic voltammetry on their electrochemical behavior and electrocatalytic properties. The composite ultrathin films exhibit remarkable electrocatalytic effects on the reduction of BrO3-, H2O2, and HNO2. The electrocatalytic effects on HNO2 reduction are enhanced with increasing layer number from 1 to 3 but level off with much thicker multilayers. The stability of the monolayer and multilayer films is also examined. (C) 2000 The Electrochemical Society. S0013-4651(99)04-057-4. All rights reserved.
Resumo:
Through layer-by-layer assembly, undecatungstozincates monosubstituted by transition metals Mn, ZnW11 Mn (H2O) O-39(8-) was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of these polyoxometalates was investigated. Cyclic voltammetry proves the uniform growth of the film. They exhibit some special electrochemical properties in the films, different from those in homogeneous aqueous solution. The effect of pH on the redox behavior of ZnW11Mn(H2O)O-39(8-) in the film was discussed in detail. The multilayer film electrodes have an excellent electrocatalytic response to the reduction of H2O2 and BrO3-, and to the oxidation of ascorbic acid.
Resumo:
Electrochemical quartz crystal microbalance (EQCM) technique was used to measure the ion transfer in redox processes in electroactive organic thin films, such as self-assembled monolayer (SAM) (4-pyridyl hydroquinone, abbr. 4PHQ), multilayer based on SAM and conducting polymer film (here poly-(3,4-ethylenedioxythiophene), abbr. PEDOT). A mechanism of mixed ion transfer is developed and presented. Analysis of mixed ion transfer during redox processes successfully elucidates the deviation of oscillation frequency of the quartz crystal from theoretical expectation.
Resumo:
A new multilayer film fabricated based on electrostatic attraction in this laboratory was firstly characterized by the electrochemical impedance spectroscopy. The relationship between the charge-transfer resistance and double-layer capacitance with the number of layers was obtained through analyzing the impedance data. It demonstrated that the multilayer film showed a unique structure with the film growth. Compared to other electrochemical methods, the electrochemical impedance spectroscopy was proved to be a very sensitive and useful technique for characterizing the multilayer films.
Resumo:
Stable monolayer of the polyaniline(PAn) doped with dodecyl benzenesulfonic acid(DBSA) can form on the pure water surface. The multilayer ultrathin film can be successfully deposited by Langmuir-Blodgett(LB) technique onto CaF2 substrate. The limiting mean molecular area and collapse pressure observed are 0.066 nm(2) and 35 mN m(-1), respectively. The multilayer LB film and casting film were all characterized by TR and UV-Vis-NIR spectroscopies.
Resumo:
A new kind of monomers including aromatic spirodilactone-5, 5'-carboxy-7,7'-dioxo-2,2'-spirobi(benzo-[c]tetrahydrofuran) is synthesized from m-xylene and paraformaldehyde. It is converted to a series of polyamides and polyesters by means of low-temperature solution polycondensation and interfacial polycondensation. NMR and IR spectra, solubility, mechanical and thermal properties of all these polymers are investigated. The polymers have high glass transition temperatures and good thermal oxidative properties. All polyamides have high viscosity and good solubility in strong polar organic solvents such as DMSO, DMAc, DMF and NMP. All polyamides can be cast into transparent, flexible and tough films possessing good tensile properties.
Resumo:
Stable monolayer of the polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained, of which multilayers have been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. The limiting mean molecular area and collapse pressure are found to be 0.294 nm(2) and 41 mN/m, respectively. The multilayers were characterized by IR and W-Vis-NIR spectroscopies. X-ray small-angle diffraction data show that the multilayer was periodic layer structure with the layer spacing of 1.60 nm. The comparisons are also made with characterization of the casting film. (C) 1999 Elsevier Science S.A. All rights reserved.