994 resultados para mu-opioid receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the yeast two-hybrid system, we identified the mu 2 subunit of the clathrin adaptor complex 2 as a protein interacting with the C-tail of the alpha 1b-adrenergic receptor (AR). Direct association between the alpha 1b-AR and mu 2 was demonstrated using a solid phase overlay assay. The alpha 1b-AR/mu 2 interaction occurred inside the cells, as shown by the finding that the transfected alpha 1b-AR and the endogenous mu 2 could be coimmunoprecipitated from HEK-293 cell extracts. Mutational analysis of the alpha 1b-AR revealed that the binding site for mu 2 does not involve canonical YXX Phi or dileucine motifs but a stretch of eight arginines on the receptor C-tail. The binding domain of mu 2 for the receptor C-tail involves both its N terminus and the subdomain B of its C-terminal portion. The alpha 1b-AR specifically interacted with mu 2, but not with the mu 1, mu 3, or mu 4 subunits belonging to other AP complexes. The deletion of the mu 2 binding site in the C-tail markedly decreased agonist-induced receptor internalization as demonstrated by confocal microscopy as well as by the results of a surface receptor biotinylation assay. The direct association of the adaptor complex 2 with a G protein-coupled receptor has not been reported so far and might represent a common mechanism underlying clathrin-mediated receptor endocytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examines the effect of concanavalin A (Con A) on the blood insulin and glucose levels of rats. Male and female rats treated with Con A (62.5-500 µg/kg) for three days showed a dose- and time-dependent hyperinsulinemia that lasted more than 48 h. Male rats were more sensitive to Con A. Thus, 6 h after treatment with Con A the circulating insulin levels in male rats had increased by 85% (control: 10.2 ± 0.9 mU/l and Con A-treated: 18.8 ± 1 mU/l) compared to only 38% (control: 7.5 ± 0.2 mU/l; Con A-treated: 10.3 ± 0.9 mU/l) in females. An identical response was seen after 12 h. Con A (250 µg/kg) produced time-dependent hypoglycemia in both sexes but more pronounced in males. There was no correlation between the hypoglycemia and hyperinsulinemia described above. The Con A-induced hyperinsulinemia in rats of both sexes was abolished in gonadectomized animals (intact males: +101 ± 17% vs orchiectomized males: -5 ± 3%; intact females: +86 ± 23% vs ovariectomized females: -18 ± 7.2%). Pretreating intact male and female rats with human chorionic gonadotropin also significantly inhibited the Con A-induced hyperinsulinemia. Estradiol (10 µg/kg, im) significantly blocked the Con A-induced increase in circulating insulin in male rats (101 ± 17% for controls vs 32 ± 5.3% for estradiol-treated animals, P<0.05) while testosterone (10 mg/kg, im) had no similar effect on intact female rats. Pretreating Con A-injected rats with opioid antagonists such as naloxone (1 mg/kg, sc) and naltrexone (5 mg/kg, sc) blocked the hyperinsulinemia produced by the lectin in males (control: +101 ± 17% vs naloxone-treated: +5 ± 14%, or naltrexone-treated: -23 ± 4.5%) and females (control: +86 ± 23% vs naloxone-treated: +21 ± 20%, or naltrexone-treated: -18 ± 11%). These results demonstrate that Con A increases the levels of circulating insulin in rats and that this response is opioid-dependent and hormonally regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The opioid receptors consist of three main subtypes; μ, δ, and κ. Previous binding studies have shown that fragments of the milk protein, β-casein, known as β-casomorphins are agonists of these receptors which are selective for the μ receptor subtype. Using the crystal structures of these three receptors, computational molecular docking studies were done using the software GOLD to determine the conformation of β-casomorphin-5 and 7 when they bind to these three opioid receptors. GOLD was able to discriminate among the three receptors when docking the rigid ligands co-crystalized with the receptors. However, GOLD could not discriminate among the three receptors for either of the highly flexible β-casomorphins. A per amino acid scoring method was developed to overcome this problem. This method was used to predict the conformation of both β-casomorphin-5 and 7 in the μ receptor and determine that the two amino acid residues, Lys303 and Trp318 of the μ receptor are responsible for discriminating among the three receptor subtypes for binding of the β-casomorphin-5 and 7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and therefore affect significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely reported that cholera toxin (Ctx) remains a significant cause of gastrointestinal disease globally, particularly in developing countries where access to clean drinking water is at a premium. Vaccines are prohibitively expensive and have shown only short-term protection. Consequently, there is scope for continued development of novel treatment strategies. One example is the use of galactooligosaccharides (GOS) as functional mimics for the cell-surface toxin receptor (GM1). In this study, GOS fractions were fractionated using cation exchange chromatography followed by structural characterization using a combination of hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) such that their molecular weight profiles were known. Each profile was correlated against biological activity measured using a competitive inhibitory GM1-linked ELISA. GOS fractions containing > 5% hexasaccharides (DP6) exhibited > 90% binding, with EC50 values between 29.27 and 56.04 mg/mL. Inhibition by GOS DP6, was dose dependent, with an EC50 value of 5.10 mg/mL (5.15 mu M MW of 990 Da). In removing low molecular weight carbohydrates that do possess prebiotic, nutraceutical, and/or biological properties and concentrating GOS DP5 and/or DP6, Ctx antiadhesive activity per unit of (dry) weight was improved. This could be advantageous in the manufacture of pharmaceutical or nutraceutical formulations for the treatment or prevention of an acute or chronic disease associated with or caused by the adhesion and/or uptake of a Ctx or HLT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide- and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropathic pain is an important clinical problem and it is usually resistant to the current therapy. We have recently characterized a novel analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in an experimental model of neuropathic pain induced in rats by chronic constriction, of sciatic nerve. The effect of the peptide was compared to that induced by the crude venom, which confirmed that crotalphine is responsible for the antinociceptive effect of the crotalid venom on neuropathic pain. For characterization of neuropathic pain, the presence of hyperalgesia, allodynia and spontaneous pain was assessed at different times after nerve constriction. These phenomena were detected 24 h after surgery and persisted at least for 14 days. The pharmacological treatments were performed on day 14 after surgery. Crotalphine (0.2-5 mu g/kg) and the crude venom (400-1600 mu g/kg) administered p.o. inhibited hyperalgesia, allodynia and spontaneous pain induced by nerve constriction. The antinociceptive effect of the peptide and crude venom was long lasting, since it was detected up to 3 days after treatment. Intraplantar injection of naloxone (1 mu g/paw) blocked the antinociceptive effect, indicating the involvement of opioid receptors in this phenomenon. Gabapentin (200 mg/kg, p.o.), and morphine (5 mg/kg, s.c.), used as positive controls, blocked hyperalgesia and partially inhibited allodynia induced by nerve constriction. These data indicate that crotalphine induces a potent and long lasting opioid antinociceptive effect in neuropathic pain that surpasses that observed with standard analgesic drugs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. The pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (receptors were also responsive to Bj-PRO-7a application, whereas no such response was observed in undifferentiated P19 cells not expressing muscarinic receptors. As further support for its specific action on M1 receptors, the peptide did not activate M3 subtypes in transfected CHO cells. Our findings provide a novel M1 muscarinic receptor agonist that could be used for basic research and even for pharmacological applications. (C) 2010 International Society for Advancement of Cytometry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rodrigues SF, Tran ED, Fortes ZB, Schmid-Schonbein GW. Matrix metalloproteinases cleave the beta(2)-adrenergic receptor in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 299: H25-H35, 2010. First published April 9, 2010; doi:10.1152/ajpheart.00620.2009.-We recently observed the enhanced serine and matrix metalloproteinase (MMP) activity in the spontaneously hypertensive rat (SHR) compared with its normotensive Wistar-Kyoto (WKY) rat and the cleavage of membrane receptors in the SHR by MMPs. We demonstrate in vivo that MMP-7 and MMP-9 injection leads to a vasoconstrictor response in microvessels of rats that is blocked by a specific MMP inhibitor (GM-6001, 1 mu M). Multiple pathways may be responsible. Since the beta(2)-adrenergic receptor (beta(2)-AR) is susceptible to the action of endogenous MMPs, we hypothesize that MMPs in the plasma of SHRs are able to cleave the extracellular domain of the beta(2)-AR. SHR arterioles respond in an attenuated fashion to beta(2)-AR agonists and antagonists. Aorta and heart muscle of control Wistar rats were exposed for 24 h (37 C) to fresh plasma of male Wistar and WKY rats and SHRs with and without doxycycline (30 mu M) and EDTA (10 mM) to reduce MMP activity. The density of extracellular and intracellular domains of beta(2)-AR was determined by immunohistochemistry. The density of the extracellular domain of beta(2)-AR is reduced in aortic endothelial cells and cardiac microvessels of SHRs compared with that of WKY or Wistar rats. Treatment of the aorta and the heart of control Wistar rats with plasma from SHRs, but not from WKY rats, reduced the number of extracellular domains, but not intracellular domains, of beta(2)-AR in aortic endothelial cells and cardiac microvessels. MMP inhibitors (EDTA and doxycycline) prevented the cleavage of the extracellular domain. Thus MMPs may contribute to the reduced density of the extracellular domain of beta(2)-AR in blood vessels and to the increased arteriolar tone of SHRs compared with normotensive rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer`s disease, on currents elicited by activation of rat alpha(3)beta(4) nAChR heterologously expressed in KX alpha(3)beta(4)R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 +/- 0.2 mu M and 4.3 +/- 1.3 for the channel opening equilibrium constant, Phi(-1). Experiments were performed to investigate whether tacrine is able to activate the alpha(3)beta(4) nAChR. Tacrine did not activate whole-cell currents in KX alpha(3)beta(4)R2 cells but inhibited receptor activity at submicromolar concentration. Dose response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 mu M. The increase of Phi(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.