311 resultados para modis
Resumo:
Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.
Resumo:
Crop monitoring and more generally land use change detection are of primary importance in order to analyze spatio-temporal dynamics and its impacts on environment. This aspect is especially true in such a region as the State of Mato Grosso (south of the Brazilian Amazon Basin) which hosts an intensive pioneer front. Deforestation in this region as often been explained by soybean expansion in the last three decades. Remote sensing techniques may now represent an efficient and objective manner to quantify how crops expansion really represents a factor of deforestation through crop mapping studies. Due to the special characteristics of the soybean productions' farms in Mato Grosso (area varying between 1000 hectares and 40000 hectares and individual fields often bigger than 100 hectares), the Moderate Resolution Imaging Spectroradiometer (MODIS) data with a near daily temporal resolution and 250 m spatial resolution can be considered as adequate resources to crop mapping. Especially, multitemporal vegetation indices (VI) studies have been currently used to realize this task [1] [2]. In this study, 16-days compositions of EVI (MODQ13 product) data are used. However, although these data are already processed, multitemporal VI profiles still remain noisy due to cloudiness (which is extremely frequent in a tropical region such as south Amazon Basin), sensor problems, errors in atmospheric corrections or BRDF effect. Thus, many works tried to develop algorithms that could smooth the multitemporal VI profiles in order to improve further classification. The goal of this study is to compare and test different smoothing algorithms in order to select the one which satisfies better to the demand which is classifying crop classes. Those classes correspond to 6 different agricultural managements observed in Mato Grosso through an intensive field work which resulted in mapping more than 1000 individual fields. The agricultural managements above mentioned are based on combination of soy, cotton, corn, millet and sorghum crops sowed in single or double crop systems. Due to the difficulty in separating certain classes because of too similar agricultural calendars, the classification will be reduced to 3 classes : Cotton (single crop), Soy and cotton (double crop), soy (single or double crop with corn, millet or sorghum). The classification will use training data obtained in the 2005-2006 harvest and then be tested on the 2006-2007 harvest. In a first step, four smoothing techniques are presented and criticized. Those techniques are Best Index Slope Extraction (BISE) [3], Mean Value Iteration (MVI) [4], Weighted Least Squares (WLS) [5] and Savitzky-Golay Filter (SG) [6] [7]. These techniques are then implemented and visually compared on a few individual pixels so that it allows doing a first selection between the five studied techniques. The WLS and SG techniques are selected according to criteria proposed by [8]. Those criteria are: ability in eliminating frequent noises, conserving the upper values of the VI profiles and keeping the temporality of the profiles. Those selected algorithms are then programmed and applied to the MODIS/TERRA EVI data (16-days composition periods). Tests of separability are realized based on the Jeffries-Matusita distance in order to see if the algorithms managed in improving the potential of differentiation between the classes. Those tests are realized on the overall profile (comprising 23 MODIS images) as well as on each MODIS sub-period of the profile [1]. This last test is a double interest process because it allows comparing the smoothing techniques and also enables to select a set of images which carries more information on the separability between the classes. Those selected dates can then be used to realize a supervised classification. Here three different classifiers are tested to evaluate if the smoothing techniques as a particular effect on the classification depending on the classifiers used. Those classifiers are Maximum Likelihood classifier, Spectral Angle Mapper (SAM) classifier and CHAID Improved Decision tree. It appears through the separability tests on the overall process that the smoothed profiles don't improve efficiently the potential of discrimination between classes when compared with the original data. However, the same tests realized on the MODIS sub-periods show better results obtained with the smoothed algorithms. The results of the classification confirm this first analyze. The Kappa coefficients are always better with the smoothing techniques and the results obtained with the WLS and SG smoothed profiles are nearly equal. However, the results are different depending on the classifier used. The impact of the smoothing algorithms is much better while using the decision tree model. Indeed, it allows a gain of 0.1 in the Kappa coefficient. While using the Maximum Likelihood end SAM models, the gain remains positive but is much lower (Kappa improved of 0.02 only). Thus, this work's aim is to prove the utility in smoothing the VI profiles in order to improve the final results. However, the choice of the smoothing algorithm has to be made considering the original data used and the classifier models used. In that case the Savitzky-Golay filter gave the better results.
Resumo:
Objetivou avaliar a dinâmica de padrões na vegetação usando NDVI (Normalized Difference Vegetation Index) associado à oferta hídrica no município de Dom Eliseu, no Pará com base na reflectância em áreas com cultivos anuais de grãos e plantios florestais, nos períodos de maior e menor deficiência de água no solo. Foram analisados dados meteorológicos para calcular balanços hídricos (CAD = 300 mm) e respostas em NDVI (Normalized Difference Vegetation Index) extraídos do sensor MODIS (Moderate Resolution Imaging Spectroradiometer). As imagens-índice (NDVI) referentes aos meses de janeiro a dezembro de 2012 foram processadas no aplicativo Envi 4.7 e reclassificadas no ArcGIS10.1. Os resultados apontaram variações temporais ao longo do ano, tanto relacionados aos sistemas de agrícolas de produção, quanto aos remanescentes florestais os quais indicavam associações à oferta hídrica na região e possíveis respostas fenológicas. Em Dom Eliseu, o mês de maior valor em NDVI foi em abril com mais 60% do município expressando manutenção das folhas e da capacidade fotossintética das plantas, pois os valores em NDVI foram superiores a 0,6. No período de agosto a setembro ocorrem as menores cotas pluviais, ocasionando déficits hídricos que atingem valores superiores a 70 mm. Observou-se que as respostas em NDVI foram mais expressivas no mês de outubro, totalizando 16% da área de estudo com valores entre 0,2 a 0,3, evidenciando reduzida expressão em resposta espectral na biomassa dos remanescentes de vegetação e plantios florestais. Conclui-se que existe sensibilidade do NDVI em resposta à condição hídrica no solo. Ao contabilizar-se as diferenças entre a reflectâncias no infravermelho próximo e no vermelho divididos pela soma dessas reflectância, os baixos valores de NDVI, reforçam que no período de maior deficiência hídrica há queda de folhas, pois a superfície imageada, responde com valores mais elevados no solo do que na vegetação.
Caracterização de feições oceanográficas na plataforma de Santa Catarina através de imagens orbitais
Resumo:
Este trabalho tem por objetivo identificar e caracterizar as feições oceanográficas de pequena e mesoescala que ocorrem na plataforma continental de Santa Catarina (SC). Foram empregadas imagens de temperatura e concentração de clorofila da superfície do mar (TSM e CSM), obtidas pelo sensor MODIS. Foi selecionada uma imagem diária para cada mês do ano de 2003, excetuando dezembro, onde procurou-se avaliar efeitos sazonais. As feições oceanográficas foram observadas através da aplicação de diferentes níveis de contraste e paletas de cores para realce. Foram identificadas feições como vórtices, meandros, cogumelos, plumas, filamentos, frentes e áreas de ressurgências. Os resultados indicam que no verão a distribuição superficial em mesoescala da temperatura é mais homogênea, levando a um número menor de feições observáveis. O fenômeno de ressurgência costeira em escala localizada ao sul da Ilha de SC e junto à costa foi observado nos meses de novembro, janeiro e fevereiro. Durante o outono e o inverno as imagens apresentaram maior grau de complexidade, principalmente devido à presença da frente costeira do Prata, com características de menor temperatura e maiores valores de clorofila.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.
Resumo:
Este trabalho teve como objetivo construir uma regressão linear múltipla, empregando variáveis agrometeorológicas e espectrais, para estimativa de rendimento de grãos de trigo, em municípios pertencentes à região de atuação da Cooperativa Cotrijal (norte do Rio Grande do Sul). Para isso, foram empregados dados de rendimento (1991 a 2006), dados agrometeorológicos mensais (1991 a 2006) e dados espectrais (imagens NDVI/MODIS, 2000 a 2006). Foi analisada existência de aumento significativo no rendimento de grãos, decorrente da incorporação de novas tecnologias (tendência tecnológica). Para escolha das variáveis independentes da regressão linear, foi analisada a correlação dos dados agrometeorológicos e espectrais com os dados de rendimento. Definidas as variáveis, foi construída uma regressão linear múltipla de estimativa de rendimento de grãos de trigo. Os resultados mostraram que não houve aumento significativo no rendimento de grãos de trigo da Cotrijal, no período analisado. Foram escolhidas as seguintes variáveis independentes para construção da regressão linear múltipla: precipitação pluvial (outubro), índice de dano por geadas (setembro), graus-dia (acumulados de maio a outubro) e índice de vegetação por diferença normalizada (integrado de junho a outubro). As regressões lineares múltiplas apresentaram resultados satisfatórios, com erros de estimativa inferiores a 10%, na maior parte dos anos analisados. As características de precisão, fácil execução e baixo custo das regressões apontaram para possibilidade de uso conjunto de dados agrometeorológicos e espectrais, na estimativa de rendimento de grãos de trigo. Mais estudos são necessários para verificação dos resultados dos modelos, quando da incorporação de uma série mais longa de dados espectrais.
Resumo:
Moçambique é um país localizado ao longo da costa Leste da África Austral, com a economia baseada essencialmente na agricultura. A cultura do milho (Zea mays L.) é a mais importante, cultivada em regime de sequeiro, com rendimentos dependentes das condições meteorológicas. Este trabalho teve como objetivo o ajuste de um modelo agrometeorológico espectral, para estimativa de rendimentos do milho, na província de Manica. A área de estudo envolveu os distritos de Gondola, Manica, Mossurize e Sussundenga, responsáveis por mais de 80% da produção de milho na província de Manica, nos anos de 2000 a 2009. ETr e ETm e ISNA foram as variáveis agrometeorológicas testadas no ajuste, obtidas a partir de estimativas de elementos meteorológicos do modelo do ECMWF. As variáveis espectrais foram os índices EVI e NDVI, provenientes do produto MOD13Q1, e o índice LSWI, calculado utilizando-se as bandas de refletância contidas neste produto. O modelo agrometeorológico espectral, ajustado por meio de regressão linear múltipla, teve como variáveis independentes os índices meteorológicos e espectrais e, como variável dependente, o rendimento médio ou o rendimento relativo. O modelo regional, que incluiu os distritos de Gondola, Manica e Sussundenga, e considerou o rendimento relativo, foi o mais recomendado para estimativa de rendimentos do milho, na região, com r² = 0,762 e RMSE de 9,46%.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 20 de Março de 2014, Universidade dos Açores.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais
Resumo:
Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems
Resumo:
Relatório apresentado ao Instituto Superior De Contabilidade e Administração Do Porto para obtenção do grau de Mestre em Logística Orientado por António Jorge S. T. Duarte
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.