957 resultados para mobile communications
Resumo:
Smart and mobile environments require seamless connections. However, due to the frequent process of ''discovery'' and disconnection of mobile devices while data interchange is happening, wireless connections are often interrupted. To minimize this drawback, a protocol that enables an easy and fast synchronization is crucial. Bearing this in mind, Bluetooth technology appears to be a suitable solution to carry on such connections due to the discovery and pairing capabilities it provides. Nonetheless, the time and energy spent when several devices are being discovered and used at the same time still needs to be managed properly. It is essential that this process of discovery takes as little time and energy as possible. In addition to this, it is believed that the performance of the communications is not constant when the transmission speeds and throughput increase, but this has not been proved formally. Therefore, the purpose of this project is twofold: Firstly, to design and build a framework-system capable of performing controlled Bluetooth device discovery, pairing and communications. Secondly, to analyze and test the scalability and performance of the \emph{classic} Bluetooth standard under different scenarios and with various sensors and devices using the framework developed. To achieve the first goal, a generic Bluetooth platform will be used to control the test conditions and to form a ubiquitous wireless system connected to an Android Smartphone. For the latter goal, various stress-tests will be carried on to measure the consumption rate of battery life as well as the quality of the communications between the devices involved.
Resumo:
The work presented in this thesis revolves around erasure correction coding, as applied to distributed data storage and real-time streaming communications.
First, we examine the problem of allocating a given storage budget over a set of nodes for maximum reliability. The objective is to find an allocation of the budget that maximizes the probability of successful recovery by a data collector accessing a random subset of the nodes. This optimization problem is challenging in general because of its combinatorial nature, despite its simple formulation. We study several variations of the problem, assuming different allocation models and access models, and determine the optimal allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount of data) for a variety of cases. Although the optimal allocation can have nonintuitive structure and can be difficult to find in general, our results suggest that, as a simple heuristic, reliable storage can be achieved by spreading the budget maximally over all nodes when the budget is large, and spreading it minimally over a few nodes when it is small. Coding would therefore be beneficial in the former case, while uncoded replication would suffice in the latter case.
Second, we study how distributed storage allocations affect the recovery delay in a mobile setting. Specifically, two recovery delay optimization problems are considered for a network of mobile storage nodes: the maximization of the probability of successful recovery by a given deadline, and the minimization of the expected recovery delay. We show that the first problem is closely related to the earlier allocation problem, and solve the second problem completely for the case of symmetric allocations. It turns out that the optimal allocations for the two problems can be quite different. In a simulation study, we evaluated the performance of a simple data dissemination and storage protocol for mobile delay-tolerant networks, and observed that the choice of allocation can have a significant impact on the recovery delay under a variety of scenarios.
Third, we consider a real-time streaming system where messages created at regular time intervals at a source are encoded for transmission to a receiver over a packet erasure link; the receiver must subsequently decode each message within a given delay from its creation time. For erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts whose maximum length is sufficiently short or long, we show that a time-invariant intrasession code asymptotically achieves the maximum message size among all codes that allow decoding under all admissible erasure patterns. For the bursty erasure model, we also show that diagonally interleaved codes derived from specific systematic block codes are asymptotically optimal over all codes in certain cases. We also study an i.i.d. erasure model in which each transmitted packet is erased independently with the same probability; the objective is to maximize the decoding probability for a given message size. We derive an upper bound on the decoding probability for any time-invariant code, and show that the gap between this bound and the performance of a family of time-invariant intrasession codes is small when the message size and packet erasure probability are small. In a simulation study, these codes performed well against a family of random time-invariant convolutional codes under a number of scenarios.
Finally, we consider the joint problems of routing and caching for named data networking. We propose a backpressure-based policy that employs virtual interest packets to make routing and caching decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol that combines shortest-path routing with least-recently-used (LRU) cache replacement.
Resumo:
Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.
The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.
FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.
The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.
Resumo:
221 p.
Resumo:
The recent advances in urban wireless communications and protocols that spurred the development of city-wide wireless infrastructure motivated this research, since in many cases, construction sites are not conveniently located for wired connectivity. Large scale transportation projects for example, such as new highways, railroad tracks and the networks of utilities (power-lines, phone lines, mobile towers, etc) that usually follow them are constructed in areas where wired infrastructure for data exchange is often expensive and time-consuming to deploy. The communication difficulties that can be encountered in such construction sites can be addressed with a wireless communications link between the construction site and the decision-making office. This paper presents a case study on long-range, wireless communications suitable for data exchange between construction sites and engineering headquarters. The purpose of this study was to define the requirements for a reliable wireless communications model where common types of electronic construction data will be exchanged in a fast and efficient manner, and construction site personnel will be able to interact and share knowledge, information and electronic resources with the office staff.
Resumo:
It is anticipated that constrained devices in the Internet of Things (IoT) will often operate in groups to achieve collective monitoring or management tasks. For sensitive and mission-critical sensing tasks, securing multicast applications is therefore highly desirable. To secure group communications, several group key management protocols have been introduced. However, the majority of the proposed solutions are not adapted to the IoT and its strong processing, storage, and energy constraints. In this context, we introduce a novel decentralized and batch-based group key management protocol to secure multicast communications. Our protocol is simple and it reduces the rekeying overhead triggered by membership changes in dynamic and mobile groups and guarantees both backward and forward secrecy. To assess our protocol, we conduct a detailed analysis with respect to its communcation and storage costs. This analysis is validated through simulation to highlight energy gains. The obtained results show that our protocol outperforms its peers with respect to keying overhead and the mobility of members.
Resumo:
Low-Power and Lossy-Network (LLN) are usually composed of static nodes, but the increase demand for mobility in mobile robotic and dynamic environment raises the question how a routing protocol for low-power and lossy-networks such as (RPL) would perform if a mobile sink is deployed. In this paper we investigate and evaluate the behaviour of the RPL protocol in fixed and mobile sink environments with respect to different network metrics such as latency, packet delivery ratio (PDR) and energy consumption. Extensive simulation using instant Contiki simulator show significant performance differences between fixed and mobile sink environments. Fixed sink LLNs performed better in terms of average power consumption, latency and packet delivery ratio. The results demonstrated also that RPL protocol is sensitive to mobility and it increases the number of isolated nodes.
Resumo:
This letter exposed a serious unfairness problem with IEEE 802.11 MAC based Mobile Ad-hoc Networks (MANETs) when operating TCP connections, and identifies the three common factors that contribute to this problem. The work initiated the development of a programmable wireless framework that is subsequently used in a spin-out company (TOM), and by the Telecoms Technology Testing centre in Taiwan(Dr D Chieng).
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.
Resumo:
It is well known that interference of the human body affects the performance of the antennas in mobile phone handsets. In this contribution, we investigate the use of miniaturized metallodielectric electromagnetic band gap (MEBG) structures embedded in the case of a mobile handset as a means of decoupling the antenna from the user's hand. The closely coupled MEBG concept is employed to achieve miniaturization of the order of 15:1. Full wave dispersion relations for planar closely coupled MEBG arrays are presented and are validated experimentally. The performance of a prototype handset with an embedded conformal MEBG is assessed experimentally and is compared to a similar prototype without the MEBG. Reduction in the detuning of the antenna because of the human hand by virtue of the MEBG is demonstrated. Moreover, the efficiency of the handset when loaded with a human hand model is shown to improve when the MEBG is in place. The improvements are attributed to the decoupling of the antenna from the user's hand, which is achieved by means of suppressing the fields in the locality of the hand.
Resumo:
Mobile ad hoc networking of dismounted combat personnel is expected to play an important role in the future of network-centric operations. High-speed, short-range, soldier-to-soldier wireless communications will be required to relay information on situational awareness, tactical instructions, and covert surveillance related data during special operations reconnaissance and other missions. This article presents some of the work commissioned by the U. K. Ministry of Defence to assess the feasibility of using 60 GHz millimeter-wave smart antenna technology to provide covert communications capable of meeting these stringent networking needs. Recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed in millimeter-wave soldier-mounted radio, are discussed. The introduction of covert communications between soldiers will require the development of a bespoke directive medium access layer. A number of adjustments to the IEEE 802.11 distribution coordination function that will enable directional communications are suggested. The successful implementation of future smart antenna technologies and direction of arrival-based protocols will be highly dependent on thorough knowledge of transmission channel characteristics prior to deployment. A novel approach to simulating dynamic soldier-to-soldier signal propagation using state-of-the-art animation-based technology developed for computer game design is described, and important channel metrics such as root mean square angle and delay spread for a team of four networked infantry soldiers over a range of indoor and outdoor environments is reported.
Resumo:
A simple linear precoding technique is proposed for multiple input multiple output (MIMO) broadcast systems using phase shift keying (PSK) modulation. The proposed technique is based on the fact that, on an instantaneous basis, the interference between spatial links in a MIMO system can be constructive and can contribute to the power of the useful signal to improve the performance of signal detection. In MIMO downlinks this co-channel interference (CCI) can be predicted and characterised prior to transmission. Contrary to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to influence the interference and benefit from it, thus gaining advantage from energy already existing in the communication system that is left unexploited otherwise. The proposed precoding aims at adaptively rotating, rather than zeroing, the correlation between the MIMO substreams depending on the transmitted data, so that the signal of interfering transmissions is aligned to the signal of interest at each receive antenna. By doing so, the CCI is always kept constructive and the received signal to interference-plus-noise ratio (SINR) delivered to the mobile units (MUs) is enhanced without the need to invest additional signal power per transmitted symbol at the MIMO base station (BS). It is shown by means of theoretical analysis and simulations that the proposed MIMO precoding technique offers significant performance and throughput gains compared to its conventional counterparts.