905 resultados para mineral deposits
Resumo:
A high-resolution sedimentological and geochemical study was performed on a 20 m long core from the alpine Lake Anterne (2063 m a.s.l., NW French Alps) spanning the last 10 ka. Sedimentation is mainly of minerogenic origin. The organic matter quantity (TOC%) as well as its quality (hydrogen (HI) and oxygen (OI) indices) both indicate the progressive onset and subsequent stabilization of vegetation cover in the catchment from 9950 to 5550 cal. BP. During this phase, the pedogenic process of carbonate dissolution is marked by a decrease in the calcium content in the sediment record. Between 7850 and 5550 cal. BP, very low manganese concentrations suggest anoxic conditions in the bottom-water of Lake Anterne. These are caused by a relatively high organic matter (terrestrial and lacustrine) content, a low flood frequency and longer summer stratification triggered by warmer conditions. From 5550 cal. BP, a decrease in TOC, stabilization of HI and higher sedimentation rates together reflect increased erosion rates of leptosols and developed soils, probably due to a colder and wetter climate. Then, three periods of important soil destabilization are marked by an increased frequency and thickness of flood deposits during the Bronze Age and by increases in topsoil erosion relative to leptosols (HI increases) during the late Iron Age/Roman period and the Medieval periods. These periods are also characterized by higher sedimentation rates. According to palynological data, human impact (deforestation and/or pasturing activity) probably triggered these periods of increased soil erosion.
Resumo:
Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
X-ray diffraction analyses of the clay-sized fraction of sediments from the Nankai Trough and Shikoku Basin (Sites 1173, 1174, and 1177 of the Ocean Drilling Program) reveal spatial and temporal trends in clay minerals and diagenesis. More detrital smectite was transported into the Shikoku Basin during the early-middle Miocene than what we observe today, and smectite input decreased progressively through the late Miocene and Pliocene. Volcanic ash has been altered to dioctahedral smectite in the upper Shikoku Basin facies at Site 1173; the ash alteration front shifts upsection to the outer trench-wedge facies at Site 1174. At greater depths (lower Shikoku Basin facies), smectite alters to illite/smectite mixed-layer clay, but reaction progress is incomplete. Using ambient geothermal conditions, a kinetic model overpredicts the amount of illite in illite/smectite clays by 15%-20% at Site 1174. Numerical simulations come closer to observations if the concentration of potassium in pore water is reduced or the time of burial is shortened. Model results match X-ray diffraction results fairly well at Site 1173. The geothermal gradient at Site 1177 is substantially lower than at Sites 1173 and 1174; consequently, volcanic ash alters to smectite in lower Shikoku Basin deposits but smectite-illite diagenesis has not started. The absolute abundance of smectite in mudstones from Site 1177 is sufficient (30-60 wt%) to influence the strata's shear strength and hydrogeology as they subduct along the Ashizuri Transect.
Resumo:
During Ocean Drilling Program Leg 190 several turbidite successions in the Nankai Trough were drilled through including Pleistocene trench fill (Sites 1173 and 1174), Pleistocene-Pliocene slope basin deposits and underlying trench fill (Sites 1175 and 1176), Miocene Shikoku Basin deposits (Site 1177), and upper Miocene trench fill (Site 1178). Sands from the Pleistocene trench-fill succession of the Nankai Trough are of mixed derivation with significant monomineralic components (quartz and feldspar) and mafic to intermediate volcanic rock fragments, in addition to sedimentary and less abundant metamorphic detritus. They have a source in the Izu collision zone in central Honshu. Sands from the slope and accreted trench fill at Sites 1175 and 1176 are dominated by quartz with less abundant feldspar, sedimentary rock fragments, and only minor volcanic and metamorphic rock fragments. In contrast to the trench turbidites of Sites 1173 and 1174, these sands are very quartzose with characteristic radiolarian chert fragments. Volcanic rock fragments are mainly of silicic composition. Potential sources of these sands are uplifted subduction complexes of southwest Japan. Sands from the accreted trench turbidites at Site 1178 have clast types similar to those at Sites 1175 and 1176. In contrast, however, framework detrital modes are distinctive, with Site 1178 sands having substantially lower total quartz contents and more abundant fine-grained sedimentary rock fragments. These sands were also probably derived from the island of Shikoku, but their composition indicates that sedimentary rocks were abundant in the source area and these may have been Miocene forearc basin successions that were largely removed by erosion. Erosional remnants of Miocene forearc basin deposits are present on the Kii Peninsula east-northeast of Shikoku. Erosion followed a phase of exhumation of the Shimanto Belt indicated by apatite fission track ages at ~10 Ma. Sand in the lower-upper Miocene turbidites of the lower Shikoku Basin section at Site 1177 is more varied in composition, with the upper part of the unit similar to Site 1178 (i.e., rich in sedimentary rock fragments) and the lower part similar to those at Sites 1175 and 1176 (i.e., rich in quartz with some silicic volcanic rock fragments). Sands from the lower part of the Miocene turbidite unit were derived from a continental source with plutonic and volcanic rocks, possibly the inner zone of southwest Japan.
Resumo:
Sediments from near the basement of a number of Deep Sea Drilling Project (DSDP) sites, from the Bauer Deep, and from the East Pacific Rise have unusually high transition metal-to-aluminum ratios. Similarities in the chemical, isotopic, and mineralogical compositions of these deposits point to a common origin. All the sediments studied have rare-earth-element (REE) patterns strongly resembling the pattern of sea water, implying either that the REE's were coprecipitated with ferromanganese hydroxyoxides (hydroxyoxides denote a mixture of unspecified hydrated oxides and hydroxides), or that they are incorporated in small concentrations of phosphatic fish debris found in all samples. Oxygen isotopic data indicate that the metalliferous sediments are in isotopic equilibrium with sea water and are composed of varying mixtures of two end-member phases with different oxygen isotopic compositions: an iron-manganese hydroxyoxide and an iron-rich montmorillonite. A low-temperature origin for the sediments is supported by mineralogical analyses by x-ray diffraction which show that goethite, iron-rich montmorillonite, and various manganese hydroxyoxides are the dominant phases present. Sr87/Sr86 ratios for the DSDP sediments are indistinguishable from the Sr87/Sr86 ratio in modern sea water. Since these sediments were formed 30 to 90 m.y. ago, when sea water had a lower Sr87/Sr86 value, the strontium in the poorly crystalline hydroxyoxides must be exchanging with interstitial water in open contact with sea water. In contrast, uranium isotopic data indicate that the metalliferous sediments have formed a closed system for this element. The sulfur isotopic compositions suggest that sea-water sulfur dominates these sediments with little or no contribution of magmatic or bacteriologically reduced sulfur. In contrast, ratios of lead isotopes in the metalliferous deposits resemble values for oceanic tholeiite basalt, but are quite different from ratios found in authigenic marine manganese nodules. Thus, lead in the metalliferous sediments appears to be of magmatic origin. The combined mineralogical, isotopic, and chemical data for these sediments suggest that they formed from hydrothermal solutions generated by the interaction of sea water with newly formed basalt crust at mid-ocean ridges. The crystallization of solid phases took place at low temperatures and was strongly influenced by sea water, which was the source for some of the elements found in the sediments.