159 resultados para metaheuristic
Resumo:
La traduction automatique statistique est un domaine très en demande et où les machines sont encore loin de produire des résultats de qualité humaine. La principale méthode utilisée est une traduction linéaire segment par segment d'une phrase, ce qui empêche de changer des parties de la phrase déjà traduites. La recherche pour ce mémoire se base sur l'approche utilisée dans Langlais, Patry et Gotti 2007, qui tente de corriger une traduction complétée en modifiant des segments suivant une fonction à optimiser. Dans un premier temps, l'exploration de nouveaux traits comme un modèle de langue inverse et un modèle de collocation amène une nouvelle dimension à la fonction à optimiser. Dans un second temps, l'utilisation de différentes métaheuristiques, comme les algorithmes gloutons et gloutons randomisés permet l'exploration plus en profondeur de l'espace de recherche et permet une plus grande amélioration de la fonction objectif.
Resumo:
La traduction automatique statistique est un domaine très en demande et où les machines sont encore loin de produire des résultats de qualité humaine. La principale méthode utilisée est une traduction linéaire segment par segment d'une phrase, ce qui empêche de changer des parties de la phrase déjà traduites. La recherche pour ce mémoire se base sur l'approche utilisée dans Langlais, Patry et Gotti 2007, qui tente de corriger une traduction complétée en modifiant des segments suivant une fonction à optimiser. Dans un premier temps, l'exploration de nouveaux traits comme un modèle de langue inverse et un modèle de collocation amène une nouvelle dimension à la fonction à optimiser. Dans un second temps, l'utilisation de différentes métaheuristiques, comme les algorithmes gloutons et gloutons randomisés permet l'exploration plus en profondeur de l'espace de recherche et permet une plus grande amélioration de la fonction objectif.
Resumo:
In this paper a Variable Neighborhood Search (VNS) algorithm for solving the Capacitated Single Allocation Hub Location Problem (CSAHLP) is presented. CSAHLP consists of two subproblems; the first is choosing a set of hubs from all nodes in a network, while the other comprises finding the optimal allocation of non-hubs to hubs when a set of hubs is already known. The VNS algorithm was used for the first subproblem, while the CPLEX solver was used for the second. Computational results demonstrate that the proposed algorithm has reached optimal solutions on all 20 test instances for which optimal solutions are known, and this in short computational time.
Resumo:
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.
Resumo:
Real world search problems, characterised by nonlinearity, noise and multidimensionality, are often best solved by hybrid algorithms. Techniques embodying different necessary features are triggered at specific iterations, in response to the current state of the problem space. In the existing literature, this alternation is managed either statically (through pre-programmed policies) or dynamically, at the cost of high coupling with algorithm inner representation. We extract two design patterns for hybrid metaheuristic search algorithms, the All-Seeing Eye and the Commentator patterns, which we argue should be replaced by the more flexible and loosely coupled Simple Black Box (Two-B) and Utility-based Black Box (Three-B) patterns that we propose here. We recommend the Two-B pattern for purely fitness based hybridisations and the Three-B pattern for more generic search quality evaluation based hybridisations.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
Large scale disasters, such as the one caused by the Typhoon Haiyan, which devastated portions of the Philippines in 2013, or the catastrophic 2010 Haiti earthquake, which caused major damage in Port-au-Prince and other settlements in the region, have massive and lasting effects on populations. Nowadays, disasters can be considered as a consequence of inappropriately managed risk. These risks are the product of hazards and vulnerability, which refers to the extent to which a community can be affected by the impact of a hazard. In this way, developing countries, due to their greater vulnerability, suffer the highest costs when a disaster occurs. Disaster relief is a challenge for politics, economies, and societies worldwide. Humanitarian organizations face multiple decision problems when responding to disasters. In particular, once a disaster strikes, the distribution of humanitarian aid to the population affected is one of the most fundamental operations in what is called humanitarian logistics. This term is defined as the process of planning, implementing and controlling the effcient, cost-effective ow and storage of goods and materials as well as related information, from the point of origin to the point of consumption, for the purpose of meeting the end bene- ciaries' requirements and alleviate the suffering of vulnerable people, [the Humanitarian Logistics Conference, 2004 (Fritz Institute)]. During the last decade there has been an increasing interest in the OR/MS community in studying this topic, pointing out the similarities and differences between humanitarian and business logistics, and developing models suited to handle the special characteristics of these problems. Several authors have pointed out that traditional logistic objectives, such as minimizing operation cost, are not the most relevant goals in humanitarian operations. Other factors, such as the time of operation, or the design of safe and equitable distribution plans, come to the front, and new models and algorithms are needed to cope with these special features. Up to six attributes related to the distribution plan are considered in our multi-criteria approach. Even though there are usually simple ways to measure the cost of an operation, the evaluation of some other attributes such as security or equity is not easy. As a result, several attribute measures are proposed and developed, focusing on different aspects of the solutions. Furthermore, when metaheuristic solution methods are used, considering non linear objective functions does not increase the complexity of the algorithms significantly, and thus more accurate measures can be utilized...
Resumo:
In this work we explore optimising parameters of a physical circuit model relative to input/output measurements, using the Dallas Rangemaster Treble Booster as a case study. A hybrid metaheuristic/gradient descent algorithm is implemented, where the initial parameter sets for the optimisation are informed by nominal values from schematics and datasheets. Sensitivity analysis is used to screen parameters, which informs a study of the optimisation algorithm against model complexity by fixing parameters. The results of the optimisation show a significant increase in the accuracy of model behaviour, but also highlight several key issues regarding the recovery of parameters.
Resumo:
The quality of a heuristic solution to a NP-hard combinatorial problem is hard to assess. A few studies have advocated and tested statistical bounds as a method for assessment. These studies indicate that statistical bounds are superior to the more widely known and used deterministic bounds. However, the previous studies have been limited to a few metaheuristics and combinatorial problems and, hence, the general performance of statistical bounds in combinatorial optimization remains an open question. This work complements the existing literature on statistical bounds by testing them on the metaheuristic Greedy Randomized Adaptive Search Procedures (GRASP) and four combinatorial problems. Our findings confirm previous results that statistical bounds are reliable for the p-median problem, while we note that they also seem reliable for the set covering problem. For the quadratic assignment problem, the statistical bounds has previously been found reliable when obtained from the Genetic algorithm whereas in this work they found less reliable. Finally, we provide statistical bounds to four 2-path network design problem instances for which the optimum is currently unknown.
Resumo:
The selection of a set of requirements between all the requirements previously defined by customers is an important process, repeated at the beginning of each development step when an incremental or agile software development approach is adopted. The set of selected requirements will be developed during the actual iteration. This selection problem can be reformulated as a search problem, allowing its treatment with metaheuristic optimization techniques. This paper studies how to apply Ant Colony Optimization algorithms to select requirements. First, we describe this problem formally extending an earlier version of the problem, and introduce a method based on Ant Colony System to find a variety of efficient solutions. The performance achieved by the Ant Colony System is compared with that of Greedy Randomized Adaptive Search Procedure and Non-dominated Sorting Genetic Algorithm, by means of computational experiments carried out on two instances of the problem constructed from data provided by the experts.
Resumo:
International audience
Resumo:
International audience
Resumo:
Dans ce mémoire, nous étudions un problème de tournées de véhicules dans lequel une flotte privée de véhicules n’a pas la capacité suffisante pour desservir les demandes des clients. Dans un tel cas, on fait appel à un transporteur externe. Ce dernier n’a aucune contrainte de capacité, mais un coût est encouru lorsqu’un client lui est affecté. Il n’est pas nécessaire de mettre tous les véhicules de la flotte privée en service si cette approche se révèle plus économique. L’objectif consiste à minimiser le coût fixe des véhicules, puis le coût variable de transport et le coût chargé par le transporteur externe. Notre travail consiste à appliquer la métaheuristique de recherche adaptative à grand voisinage sur ce problème. Nous comparons nos résultats avec ceux obtenus précédemment avec différentes techniques connues sur les instances de Christofides et celles de Golden.