956 resultados para mechanical wood processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is intended to evaluate the density and the mechanical, acoustic and thermal properties of compression moulded plates composed of granulate from electrical cables wastes. Those cable wastes are the insulation part from the electric cables, and are composed of PVC, PE, EMP and PEX rubber. After these materiais lose their initial properties and cease to be useful as insulation material, due to safety requirements, it is possible to reuse them into new applications like industrial or playground floorings, as sound insulation material to be applied in walls or floors, or to dampen vibrations from equipments. Recovering electric cable waste has been a major concern to the European Commission due to its leveis of toxicity when incineration and land fill ing is the solution to dispose this material. Such as the European Commission's study for DG Xl[1] suggested that recycling may be the most favourable future waste management option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, microstructure improvement using FSP (Friction Stir Processing) is studied. In the first part of the work, the microstructure improvement of as-cast A356 is demonstrated. Some tensile tests were applied to check the increase in ductility. However, the expected results couldn’t be achieved. In the second part, the microstructure improvement of a fusion weld in 1050 aluminium alloy is presented. Hardness tests were carried out to prove the mechanical propertyimprovements. In the third and last part, the microstructure improvement of 1050 aluminium alloy is achieved. A discussion of the mechanical property improvements induced by FSP is made. The influence of tool traverse speed on microstructure and mechanical properties is also discussed. Hardness tests and recrystallization theory enabled us to find out such influence

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this master's thesis was to develop a system for measuring the cutting forces of frozen wood. In northern parts of the world cuttingof frozen wood is one of the major problem. During winter and early spring the temperature inside the wood cells will fall below Zero degrees that strongly influences on the properties of the wood. These variations of properties will effects on the blade nomenclature while cutting the frozen wood. However the end results will cause uneven cutting forces. Cutting forces, Chip formation, wearing of the blade and the quality of the machined surface are difficult task. In this project we are attempting to find the variation of cutting forces and properties of frozen wood at four different temperatures (-20 , -10, 0 and + 10 degrees). The linear planning machine was used for measuring the cuttingforces. The cutting was done parallel to the long axis of wood due to the nature of pine wood and the structure of the plane. A considerable amount of work andtime was used for collecting and processing the numerical information from the sensors of the measuring system. There were some alterations suggested to the construction of the plane and the sensor system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipulated by asking subjects to memorize the spatial locations of 6 or 3 disks. The grid was always presented between the encoding and recognition of the disk pattern. As a baseline condition, grid stimuli were presented without a VSWM context. VSWM load altered both perceptual performance and neural networks active during intervening grid encoding. Participants performed faster and more accurately on a challenging perceptual task under high VSWM load as compared to the low load and the baseline condition. Visual evoked potential (VEP) analyses identified changes in the configuration of the underlying sources in one particular period occurring 160-190 ms post-stimulus onset. Source analyses further showed an occipito-parietal down-regulation concurrent to the increased involvement of temporal and frontal resources in the high VSWM context. Together, these data suggest that cognitive control mechanisms supporting working memory may selectively enhance concurrent visual processing related to an independent goal. More broadly, our findings are in line with theoretical models implicating the engagement of frontal regions in synchronizing and optimizing mnemonic and perceptual resources towards multiple goals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to produce information for the estimation of the flow balance of wood resin in mechanical pulping and to demonstrate the possibilities for improving the efficiency of deresination in practice. It was observed that chemical changes in wood resin take place only during peroxide bleaching, a significant amount of water dispersed wood resin is retained in the pulp mat during dewatering and the amount of wood resin in the solid phase of the process filtrates is very small. On the basis of this information there exist three parameters related to behaviour of wood resin that determine the flow balance in the process: 1. The liberation of wood resin to the pulp water phase 2. Theretention of water dispersed wood resin in dewatering 3. The proportion of wood resin degraded in the peroxide bleaching The effect of different factors on these parameters was evaluated with the help of laboratory studies and a literature survey. Also, information related to the values of these parameters in existing processes was obtained in mill measurements. With the help of this information, it was possible to evaluate the deresination efficiency and the effect of different factors on this efficiency in a pulping plant that produced low-freeness mechanical pulp. This evaluation showed that the wood resin content of mechanical pulp can be significantly decreased if there exists, in the process, a peroxide bleaching and subsequent washing stage. In the case of an optimal process configuration, as high as a 85 percent deresination efficiency seems to be possible with a water usage level of 8 m3/o.d.t.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämä työ käsittelee puutukkien tilavuuden mittaamista värikonenäön avulla. Värikuvat on saatu Simpeleellä olevan metsäteollisuusyrityksen hiomosta. Työssä esitetään perusteellisesti matemaattinen teoria, joka liittyy käytettyihin kuvankäsittelymenetelmiin, kuten luokitteluun, kohinan poistoon ja tukkien segmentointiin. Esitetyt menetelmät implementointiin käytännössä ja eri menetelmillä saatuja tuloksia vertailtiin keskenään. Kuvankäsittelyalgoritmit on implementoitu Matlab 6.0:n avulla. Pääasiassa käytettiin uusinta Image Processing Toolboxia, joka on versio 3.0. Tämä työn näkökulma on pääasiassa käytäntöön soveltava, koska metsäteollsuus on korkealla tasolla Suomessa ja siellä on paljon alan yrityksiä, joissa tässä työssä kehitettyä menetelmää voidaan hyödyntää.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials science is a multidisciplinary research topic related to the development of physics and technology. Mechanical alloying of ribbon flakes is a two steps route to develop advanced materials. In this work, a Fe based alloy was obtained using three pathways: mechanical alloying, melt-spinning and mechanical alloying of previously melt-spun samples. Processing conditions allow us to obtain amorphous or nanocrystalline structures. Furthermore, a bibliographic revision of mechanical alloying is here presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of water available is usually restricted, which leads to a situation where a complete understanding of the process, including water circulations and the influence of water components, is essential. The main aim of this thesis was to clarify the possibilities for the efficient use of residual peroxide by means of water circulation rearrangements. Rearranging water circulations and the reduction of water usage may cause new problems, such as metal induced peroxide decomposition that needs to be addressed. This thesis introduces theoretical methods of water circulations to combine two variables; effective utilization of residual peroxide and avoiding manganese in the alkaline peroxide bleaching stage. Results are mainly based on laboratory and mill site experiments concerning the utilization of residual peroxide. A simulation model (BALAS) was used to evaluate the manganese contents and residual peroxide doses. It was shown that with optimum recirculation of residual peroxide the brightness can be improved or chemical costs can be decreased. From the scientific perspective, it was also very important to discover that recycled peroxide was more effective pre-bleaching agent compared to fresh peroxide. This can be due to the organic acids i.e. per acetic acid in wash press filtrate that have been formed in alkaline bleaching stage. Even short retention time was adequate and the activation of residual peroxide using sodium hydroxide was not necessary. There are several possibilities for using residual peroxide in practice regarding bleaching. A typical modern mechanical pulping process line consist of defibering, screening, a disc filter, a bleach press, high consistency (HC) peroxide bleaching and a wash press. Furthermore there usually is not a particular medium consistency (MC) pre-bleaching stage that includes additional thickening equipment. The most advisable way to utilize residual peroxide in this kind of process is to recycle the wash press filtrate to the dilution of disc filter pulp (low MC pre-bleaching stage). An arrangement such as this would be beneficial in terms of the reduced convection of manganese to the alkaline bleaching stage. Manganese originates from wood material and will be removed to the water phase already in the early stages of the process. Recycling residual peroxide prior to the disc filter is not recommended because of low consistencies. Regarding water circulations, the novel point of view is that, it would be beneficial to divide water circulations into two sections and the critical location for the division is the disc filter. Both of these two sections have their own priority. Section one before the disc filter: manganese removal. Section two after the disc filter: brightening of pulp. This division can be carried out if the disc filter pulp is diluted only by wash press filtrate before the MC storage tower. The situation is even better if there is an additional press after the disc filter, which will improve the consistency of the pulp. This has a significant effect on the peroxide concentration in the MC pre-bleaching stage. In terms of manganese content, it is essential to avoid the use of disc filter filtrate in the bleach press and wash press showers. An additional cut-off press would also be beneficial for manganese removal. As a combination of higher initial brightness and lower manganese content, the typical brightness increase varies between approximately 0.5 and 1% ISO units after the alkaline peroxide bleaching stage. This improvement does not seem to be remarkable, but as it is generally known, the final brightness unit is the most expensive and difficult to achieve. The estimation of cost savings is not unambiguous. For example in GW/TMP mill case 0.6% ISO units higher final brightness gave 10% savings in the costs of bleaching chemicals. With an hypothetical 200 000 ton annual production, this means that the mill could save in the costs of bleaching chemicals more than 400 000 euros per year. In general, it can be said that there were no differences between the behavior of different types of processes (GW, PGW, TMP and BCTMP). The enhancement of recycling gave a similar response in all cases. However, we have to remember that the utilization of residual peroxide in older mills depends a great deal on the process equipment, the amount of water available and existing pipeline connections. In summary, it can be said that processes are individual and the same solutions cannot be applied to all cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building industry is a high volume branch which could provide prominent markets for wood based interior decoration solutions. Competition in interior decoration markets requires versatility in appearance. Versatility in wood appearance and added value could be achieved by printing grain patterns of different species or images directly onto wood. The problem when planning wood printing’s implementing into durable applications is basically how to transfer a high quality image or print sustainably onto wood, which is porous, heterogeneous, dimensionally unstable, non-white and rough. Wood preservation or treating, and modification can provide durability against degradation but also effect to the surface properties of wood which will effect on printability. Optimal adhesion is essential into print quality, as too high ink absorbance can cause spreading and too low ink absorbance cause pale prints. Different printing techniques have different requirements on materials and production. The direct printing on wood means, that intermedias are not used. Printing techniques with flexible printing plates or in fact non-impact techniques provide the best basis for wood printing. Inkjet printing of wood with different mechanical or chemical surface treatments, and wood plastic composite material gave good results that encourage further studies of the subject. Sanding the wood surface anti-parallel to the grain gave the best overall printing quality. Spreading parallel to the grain could not be avoided totally, except in cases where wood was treated hydrophobic so adhesion of the ink was not sufficient. Grain pattern of the underlying wood stays clearly visible in the printed images. Further studies should be made to fine tune the methods that already gave good results. Also effects of moisture content of wood, different inks, and long-term exposure to UV-radiation should be tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dentistry, yttrium partially stabilized zirconia (ZrO2) has become one of the most attractive ceramic materials for prosthetic applications. The aim of this series of studies was to evaluate whether certain treatments used in the manufacturing process, such as sintering time, color shading or heat treatment of zirconia affect the material properties. Another aim was to evaluate the load-bearing capacity and marginal fit of manually copy-milled custom-made versus prefabricated commercially available zirconia implant abutments. Mechanical properties such as flexural strength and surface microhardness were determined for green-stage milled and sintered yttrium partially stabilized zirconia after different sintering time, coloring process and heat treatments. Scanning electron microscope (SEM) was used for analyzing the possible changes in surface structure of zirconia material after reduced sintering time, coloring and heat treatments. Possible phase change from the tetragonal to the monoclinic phase was evaluated by X-ray diffraction analysis (XRD). The load-bearing capacity of different implant abutments was measured and the fit between abutment and implant replica was examined with SEM. The results of these studies showed that the shorter sintering time or the thermocycling did not affect the strength or surface microhardness of zirconia. Coloring of zirconia decreased strength compared to un-colored control zirconia, and some of the colored zirconia specimens also showed a decrease in surface microhardness. Coloring also affected the dimensions of zirconia. Significantly decreased shrinkage was found for colored zirconia specimens during sintering. Heat treatment of zirconia did not seem to affect materials’ mechanical properties but when a thin coating of wash and glaze porcelain was fired on the tensile side of the disc the flexural strength decreased significantly. Furthermore, it was found that thermocycling increased the monoclinic phase on the surface of the zirconia. Color shading or heat treatment did not seem to affect phase transformation but small monoclinic peaks were detected on the surface of the heat treated specimens with a thin coating of wash and glaze porcelain on the opposite side. Custom-made zirconia abutments showed comparable load-bearing capacity to the prefabricated commercially available zirconia abutments. However, the fit of the custom-made abutments was less satisfactory than that of the commercially available abutments. These studies suggest that zirconia is a durable material and other treatments than color shading used in the manufacturing process of zirconia bulk material does not affect the material’s strength. The decrease in strength and dimensional changes after color shading needs to be taken into account when fabricating zirconia substructures for fixed dental prostheses. Manually copy-milled custom-made abutments have acceptable load-bearing capacity but the marginal accuracy has to be evaluated carefully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is based on the utilisation of sawdust and wood chip screenings for different purposes. A substantial amount of these byproducts are readily available in the Finnish forest industry. A black liquor impregnation study showed that sawdust-like wood material behaves differently from normal chips. Furthermore, the fractionation and removal of the smallest size fractions did not have a significant effect on the impregnation of sawdust-like wood material. Sawdust kraft cooking equipped with an impregnation stage increases the cooking yield and decreases the lignin content of the produced pulp. Impregnation also increases viscosity of the pulp and decreases chlorine dioxide consumption in bleaching. In addition, impregnation increases certain pulp properties after refining. Hydrotropic extraction showed that more lignin can be extracted from hardwood than softwood. However, the particle size had a major influence on the lignin extraction. It was possible to extract more lignin from spruce sawdust than spruce chips. Wood chip screenings are usually combusted to generate energy. They can also be used in the production of kraft pulp, ethanol and chemicals. It is not economical to produce ethanol from wood chip screenings because of the expensive wood material. Instead, they should be used for production of steam and energy, kraft pulp and higher value added chemicals. Bleached sawdust kraft pulp can be used to replace softwood kraft pulp in mechanical pulp based papers because it can improve certain physical properties. It is economically more feasible to use bleached sawdust kraft pulp in stead of softwood kraft pulp, especially when the reinforcement power requirement is moderate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3), installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal) of 16,003 mg L-1. The hydraulic retention time (HRT) in each reactor was 30 h. The volumetric organic loading (VOL) applied in R1 varied from 8.9 to 25.0 g of CODtotal (L d)-1. The mean removal efficiencies of CODtotal varied from 43 to 97% in the treatment system (R1+R2+R3), stabilizing above 80% after 30 days of operation. The mean content of methane in the biogas were of 70 to 76%, the mean volumetric production was 1.7 L CH4 (L reactor d)-1 in the system, and the higher conversions were around at 0.20 L CH4 (g CODremoved)-1 in R1 and R2. The mean values of pH in the effluents ranged from 6.8 to 8.3 and the mean values of total volatile acids remained below 200 mg L-1 in the effluent of R3. The concentrations of total phenols of the affluent ranged from 45 to 278 mg L-1, and the mean removal efficiency was of 52%. The start-up of the anaerobic treatment system occurred after 30 days of operation as a result of inoculation with anaerobic sludge with active microbiota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil is the world’s largest orange producer; however, part of this production is lost during postharvest. This loss can be minimized by controlling incidence of physical damage throughout the harvest and loading operations. Impacts can negatively modify quantitative and qualitative fruits aspects. The main goal of this study was to measure the impact magnitude in two types of harvest (manual and detachment) and during all steps from picking into bags until loading for transport to the processing industry and additionally evaluating, in laboratory, the physico-chemical quality of the fruit subjected to various impacts, similar to those found in the field. In order to evaluate the impact magnitude, an instrumented sphere was used (760 mm, Techmark, Inc, USA). The following physico-chemical parameters were evaluated during 6-days of storage: weight loss, soluble solids contents, titratable acidity, ascorbic acid content, pH, firmness and peel color. The greatest impacts were observed during harvest, during the detachment practice, and when loading and unloading from bulk storage, with average acceleration values between 249.5 and 531.52G. The impact incidence in oranges were responsible for reducing the soluble solids, titratable acidity, ascorbic acid and weight by to 5.5%; 8.7%; 4.6% and 0.5%, respectively, compared to the control. Impacts during harvest and the various pre-industry manipulation steps must be controlled as they interfere in postharvest quality and physiology of ‘Valência’ oranges.