825 resultados para means clustering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community-driven Question Answering (CQA) systems that crowdsource experiential information in the form of questions and answers and have accumulated valuable reusable knowledge. Clustering of QA datasets from CQA systems provides a means of organizing the content to ease tasks such as manual curation and tagging. In this paper, we present a clustering method that exploits the two-part question-answer structure in QA datasets to improve clustering quality. Our method, {\it MixKMeans}, composes question and answer space similarities in a way that the space on which the match is higher is allowed to dominate. This construction is motivated by our observation that semantic similarity between question-answer data (QAs) could get localized in either space. We empirically evaluate our method on a variety of real-world labeled datasets. Our results indicate that our method significantly outperforms state-of-the-art clustering methods for the task of clustering question-answer archives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This papers examines the use of trajectory distance measures and clustering techniques to define normal
and abnormal trajectories in the context of pedestrian tracking in public spaces. In order to detect abnormal
trajectories, what is meant by a normal trajectory in a given scene is firstly defined. Then every trajectory
that deviates from this normality is classified as abnormal. By combining Dynamic Time Warping and a
modified K-Means algorithms for arbitrary-length data series, we have developed an algorithm for trajectory
clustering and abnormality detection. The final system performs with an overall accuracy of 83% and 75%
when tested in two different standard datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtually every sector of business and industry that uses computing, including financial analysis, search engines, and electronic commerce, incorporate Big Data analysis into their business model. Sophisticated clustering algorithms are popular for deducing the nature of data by assigning labels to unlabeled data. We address two main challenges in Big Data. First, by definition, the volume of Big Data is too large to be loaded into a computer’s memory (this volume changes based on the computer used or available, but there is always a data set that is too large for any computer). Second, in real-time applications, the velocity of new incoming data prevents historical data from being stored and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy c-Means (stKFCM) algorithm, which reduces both computational complexity and space complexity significantly. The proposed stKFCM only requires O(n2) memory where n is the (predetermined) size of a data subset (or data chunk) at each time step, which makes this algorithm truly scalable (as n can be chosen based on the available memory). Furthermore, only 2n2 elements of the full N × N (where N >> n) kernel matrix need to be calculated at each time-step, thus reducing both the computation time in producing the kernel elements and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even with relatively very small n, can provide clustering performance as accurately as kernel fuzzy c-means run on the entire data set while achieving a significant speedup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigations of the large-scale structure of our Universe provide us with extremely powerful tools to shed light on some of the open issues of the currently accepted Standard Cosmological Model. Until recently, constraining the cosmological parameters from cosmic voids was almost infeasible, because the amount of data in void catalogues was not enough to ensure statistically relevant samples. The increasingly wide and deep fields in present and upcoming surveys have made the cosmic voids become promising probes, despite the fact that we are not yet provided with a unique and generally accepted definition for them. In this Thesis we address the two-point statistics of cosmic voids, in the very first attempt to model its features with cosmological purposes. To this end, we implement an improved version of the void power spectrum presented by Chan et al. (2014). We have been able to build up an exceptionally robust method to tackle with the void clustering statistics, by proposing a functional form that is entirely based on first principles. We extract our data from a suite of high-resolution N-body simulations both in the LCDM and alternative modified gravity scenarios. To accurately compare the data to the theory, we calibrate the model by accounting for a free parameter in the void radius that enters the theory of void exclusion. We then constrain the cosmological parameters by means of a Bayesian analysis. As far as the modified gravity effects are limited, our model is a reliable method to constrain the main LCDM parameters. By contrast, it cannot be used to model the void clustering in the presence of stronger modification of gravity. In future works, we will further develop our analysis on the void clustering statistics, by testing our model on large and high-resolution simulations and on real data, also addressing the void clustering in the halo distribution. Finally, we also plan to combine these constraints with those of other cosmological probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the southern region of Mato Grosso do Sul state, Brazil, a foot-and-mouth disease (FMD) epidemic started in September 2005. A total of 33 outbreaks were detected and 33,741 FMD-susceptible animals were slaughtered and destroyed. There were no reports of FMD cases in other species than bovines. Based on the data of this epidemic, it was carried out an analysis using the K-function and it was observed spatial clustering of outbreaks within a range of 25km. This observation may be related to the dynamics of foot-and-mouth disease spread and to the measures undertaken to control the disease dissemination. The control measures were effective once the disease did not spread to farms more than 47 km apart from the initial outbreaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if in fact it should be m - 1. If the hypothesis is rejected, m is increased and a new test is carried out. The method continues (increasing m) until the hypothesis is accepted. The theoretical core of the method is the full Bayesian significance test, an intuitive Bayesian approach, which needs no model complexity penalization nor positive probabilities for sharp hypotheses. Numerical experiments were based on a cDNA microarray dataset consisting of expression levels of 205 genes belonging to four functional categories, for 10 distinct strains of Saccharomyces cerevisiae. To analyze the method's sensitivity to data dimension, we performed principal components analysis on the original dataset and predicted the number of classes using 2 to 10 principal components. Compared to Mclust (model-based clustering), our method shows more consistent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The supraceliac aortic cross-clamping can be an option to save patients with hipovolemic shock due to abdominal trauma. However, this maneuver is associated with ischemia/reperfusion (I/R) injury strongly related to oxidative stress and reduction of nitric oxide bioavailability. Moreover, several studies demonstrated impairment in relaxation after I/R, but the time course of I/R necessary to induce vascular dysfunction is still controversial. We investigated whether 60 minutes of ischemia followed by 30 minutes of reperfusion do not change the relaxation of visceral arteries nor the plasma and renal levels of malondialdehyde (MDA) and nitrite plus nitrate (NOx). Methods: Male mongrel dogs (n = 27) were randomly allocated in one of the three groups: sham (no clamping, n = 9), ischemia (supraceliac aortic cross-clamping for 60 minutes, n = 9), and I/R (60 minutes of ischemia followed by reperfusion for 30 minutes, n = 9). Relaxation of visceral arteries (celiac trunk, renal and superior mesenteric arteries) was studied in organ chambers. MDA and NOx concentrations were determined using a commercially available kit and an ozone-based chemiluminescence assay, respectively. Results: Both acetylcholine and calcium ionophore caused relaxation in endothelium-intact rings and no statistical differences were observed among the three groups. Sodium nitroprusside promoted relaxation in endothelium-denuded rings, and there were no inter-group statistical differences. Both plasma and renal concentrations of MDA and NOx showed no significant difference among the groups. Conclusion: Supraceliac aortic cross-clamping for 60 minutes alone and followed by 30 minutes of reperfusion did not impair relaxation of canine visceral arteries nor evoke biochemical alterations in plasma or renal tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generator-coordinate method is a flexible and powerful reformulation of the variational principle. Here we show that by introducing a generator coordinate in the Kohn-Sham equation of density-functional theory, excitation energies can be obtained from ground-state density functionals. As a viability test, the method is applied to ground-state energies and various types of excited-state energies of atoms and ions from the He and the Li isoelectronic series. Results are compared to a variety of alternative DFT-based approaches to excited states, in particular time-dependent density-functional theory with exact and approximate potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k(0) method (k(0)-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Fig, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k(0)-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to evaluate the possible relationships between stress tolerance, training load, banal infections and salivary parameters during 4 weeks of regular training in fifteen basketball players. The Daily Analysis of Life Demands for Athletes` questionnaire (sources and symptoms of stress) and the Wisconsin Upper Respiratory Symptom Survey were used on a weekly basis. Salivary cortisol and salivary immunoglobulin A (SIgA) were collected at the beginning (before) and after the study, and measured by enzyme-linked immunosorbent assay (ELISA). Ratings of perceived exertion (training load) were also obtained. The results from ANOVA with repeated measures showed greater training loads, number of upper respiratory tract infection episodes and negative sensation to both symptoms and sources of stress, at week 2 (p < 0.05). Significant increases in cortisol levels and decreases in SIgA secretion rate were noted (before to after). Negative sensations to symptoms of stress at week 4 were inversely and significantly correlated with SIgA secretion rate. A positive and significant relationship between sources and symptoms of stress at week 4 and cortisol levels were verified. In summary, an approach incorporating in conjunction psychometric tools and salivary biomarkers could be an efficient means of monitoring reaction to stress in sport. Copyright (C) 2010 John Wiley & Sons, Ltd.