824 resultados para mathematical regression
Resumo:
Radiotherapy is one of the main treatments used against cancer. Radiotherapy uses radiation to destroy cancerous cells trying, at the same time, to minimize the damages in healthy tissues. The planning of a radiotherapy treatment is patient dependent, resulting in a lengthy trial and error procedure until a treatment complying as most as possible with the medical prescription is found. Intensity Modulated Radiation Therapy (IMRT) is one technique of radiation treatment that allows the achievement of a high degree of conformity between the area to be treated and the dose absorbed by healthy tissues. Nevertheless, it is still not possible to eliminate completely the potential treatments’ side-effects. In this retrospective study we use the clinical data from patients with head-and-neck cancer treated at the Portuguese Institute of Oncology of Coimbra and explore the possibility of classifying new and untreated patients according to the probability of xerostomia 12 months after the beginning of IMRT treatments by using a logistic regression approach. The results obtained show that the classifier presents a high discriminative ability in predicting the binary response “at risk for xerostomia at 12 months”
Resumo:
Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering
Resumo:
Order picking consists in retrieving products from storage locations to satisfy independent orders from multiple customers. It is generally recognized as one of the most significant activities in a warehouse (Koster et al, 2007). In fact, order picking accounts up to 50% (Frazelle, 2001) or even 80% (Van den Berg, 1999) of the total warehouse operating costs. The critical issue in today’s business environment is to simultaneously reduce the cost and increase the speed of order picking. In this paper, we address the order picking process in one of the Portuguese largest companies in the grocery business. This problem was proposed at the 92nd European Study Group with Industry (ESGI92). In this setting, each operator steers a trolley on the shop floor in order to select items for multiple customers. The objective is to improve their grocery e-commerce and bring it up to the level of the best international practices. In particular, the company wants to improve the routing tasks in order to decrease distances. For this purpose, a mathematical model for a faster open shop picking was developed. In this paper, we describe the problem, our proposed solution as well as some preliminary results and conclusions.
Resumo:
In this talk, we discuss a scheduling problem that originated at TAP - Maintenance & Engineering - the maintenance, repair and overhaul organization of Portugal’s leading airline. In the repair process of aircrafts’ engines, the operations to be scheduled may be executed on a certain workstation by any processor of a given set, and the objective is to minimize the total weighted tardiness. A mixed integer linear programming formulation, based on the flexible job shop scheduling, is presented here, along with computational experiment on a real instance, provided by TAP-ME, from a regular working week. The model was also tested using benchmarking instances available in literature.
Resumo:
An individual experiences double coverage when he bene ts from more than one health insurance plan at the same time. This paper examines the impact of such supplementary insurance on the demand for health care services. Its novelty is that within the context of count data modelling and without imposing restrictive parametric assumptions, the analysis is carried out for di¤erent points of the conditional distribution, not only for its mean location. Results indicate that moral hazard is present across the whole outcome distribution for both public and private second layers of health insurance coverage but with greater magnitude in the latter group. By looking at di¤erent points we unveil that stronger double coverage e¤ects are smaller for high levels of usage. We use data for Portugal, taking advantage of particular features of the public and private protection schemes on top of the statutory National Health Service. By exploring the last Portuguese Health Survey, we were able to evaluate their impacts on the consumption of doctor visi
Resumo:
Canadian Journal of Civil Engineering 36(10) 1605–16
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação
Resumo:
Theoretical epidemiology aims to understand the dynamics of diseases in populations and communities. Biological and behavioral processes are abstracted into mathematical formulations which aim to reproduce epidemiological observations. In this thesis a new system for the self-reporting of syndromic data — Influenzanet — is introduced and assessed. The system is currently being extended to address greater challenges of monitoring the health and well-being of tropical communities.(...)
Resumo:
Fundação para a Ciência e a Tecnologia - SFRH/BD/27914/2006
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.